
 International Journal of Computer Trends and Technology (IJCTT) – volume 7 number 3– Jan 2014

 ISSN: 2231-2803 www.internationaljournalssrg.org Page 147

LWRP: Low Power Consumption Weighting Replacement Policy
using Buffer Memory

Mr. S.R.Bhalgama1, Mr.C.C.Kavar2, Mr. S.S.Parmar3

1PG Student, C. U. Shah College of Engineering and Technology, Gujarat, India
2Asst. Professor, C. U. Shah College Of Engineering & Technology, Gujarat, India.
3Asst. Professor, C. U. Shah College Of Engineering.& Technology, Gujarat, India.

 ABSTRACT: As the performance gap between
memory and processors has increased, then it leads
to the poor performance. Efficient virtual memory
can overcome this problem. And the efficiency of
virtual memory depends on the replacement policy
used for cache. In this paper, our algorithm not
only based on the time to last access and frequency
index but, we also consider the power consumption.
We show that Low Power Consumption Weighting
Replacement Policy (LWRP) has better
performance and low power consumption.

Keywords – LFU, LRU, Memory management,
replacement policy, weighting replacement policy.

I. INTRODUCTION
Caching is a well known technique towards

optimize performance that is widely used in
computer systems. Increasing cache size gives
better results but, it is very expansive. Thus we
must have to find out another alternative to
improving cache. And replacement policy is one of
them [1, 3]. Cache performance could be changed
by implementing different replacement policy.
Time access for cache is 10 times smaller than
main memory [3]. Replacement policy specifies the
parameters and based on these parameters a new
page will be replaced with existing one. Most
replacement algorithms in use are based on the
time to last access and frequency index but, it fails
in some applications [1, 2, 3]. Other new
replacement policy perform better way but, most of
them hard to implement.

 Three common caches have been used: direct
mapped in which each block from the main
memory is mapped to unique cache block. This
organization of cache doesn’t require a replacement
policy; fully associative in which each block from
the main memory can be mapped to any of the
cache block; set associative in which the cache is
split into many sets. Any block from the main
memory is mapped only to the block of a certain
set. Direct method is nothing but, one-way set
associative [2, 3].

The basic idea of our algorithm is to weight and
rank pages based on the three parameters: time to

last access, frequency and the power consumption.
So, pages that are more recent, more used and low
power consumption is rank higher. Therefore the
probability of replacing pages with smaller weight
is more than the one with higher weight [3].

The remainder of this paper is organized as
follow: In the next section, we review the existing
cache replacement policy. In section III, we
describe the energy model. In section VI, we
describe the LWRP cache replacement algorithm.
Its simulation and result discussed in section V. In
section VI we include conclusion of our work.

II. RELATED WORK
Caching is a technique that widely applied in

many computer science applications. Database and
operating system are two most important ones.
Now days, World Wide Web is becoming another
popular area of caching [1, 2, 3]. The objective of
this paper is reducing the power consumption by
reducing cache misses. So we start with related
work for cache replacement algorithm then
introduce related work for power consumption [2].

The most popular cache replacement algorithms
are first in first out (FIFO), most recently used
(MRU), least recently used (LRU), and least
frequently used (LFU). FIFO algorithm replace
block that was first referenced. The MRU
algorithm replaces the block that referenced most.
The LRU algorithm replaces the block that has not
been used for the long time. The LFU algorithm
replaces the block that was least frequently
referenced [2,3,4].

 Many different algorithms have been proposed
by researcher to improve the performance of cache
memory. Some of this algorithms are the frequency
based replacement (FBR), second chance
frequency-least recently used (SF-LRU), LRU-K
algorithm, least recently frequently used (LFRU).
LRU-K algorithm evict block based on the time of
the Kth –to-last reference to the block [5]. The
FBR algorithm is a hybrid combination of LRU
and LFU. The LRFU replacement algorithm based

International Journal of Computer Trends and Technology(IJCTT) – volume X Issue Y–Month 2013

ISSN: 2231-2803 www.internationaljournalssrg.org Page 148

on recency and frequency (CRF) value and replaces
the block with minimum CRF value [6].

There are drawbacks of the above mentioned
algorithms. LRU is uses only the time of the most
recent reference to each block and cannot
determine the frequency of the block. The LFU on
other hand cannot determine the recency of the
block. The LRU-K considers only the Kth
reference. All other algorithms such as LRFU, FBR
has a lot of implement overhead [3, 7].

Now our main focus is power consumption. Lot
of work have been done on reducing the power
consumption of cache memory. Memik et al.
proposed a victim cache structure to reduce the
number of accesses to more power consuming
structures [8]. Nicolaescu et al. propose a technique
utilizing cache line address locality to determine
the cache way prior to the cache access [9]. So our
algorithm reduced the power consumption using
the special buffer.

III. ENERGY MODEL
Several energy models have been proposed for

caches. The energy model developed in [11] is our
base. Where energy is given by:

)*()*(EnergyMissMREnergyHitHREnergy  (1)
 ArrayEnergyCellderEnergyDecoEnergyHit  (2)
 ssMemoryEnergyAcceEnergyHitEnergyMiss  (3)

Where HR= Hit Rate and MR=Miss Rate. The
EnergyCellArray is the energy in the cell arrays,
EnergyAccessMemory is the energy require to
access data in main memory. And EnergyDecoder
is the energy in the decoder. Energy require to
access the data from main memory consume the
majority energy of the overall power cost. So that
EnergyMiss >> EnergyHit, and it is clear that if
miss rate reduction is achieved, then energy
consumption is reduced. More information on the
complete model can be found in [11].

Therefore this prove that our approach to the
power consumption problem is correct and when
we achieve a better hit rate and reduce the number
of misses we are actually reducing the power
consumption of the system.

IV. LWRP ALGORITHM
In this section, we introduce a cache replacement

algorithm based on the energy model for reduce the
power consumption

1. Power consumption minimization based on
energy model

)()(EnergyHitTHitT  (4)
)()(EnergyMissTMissT  (5)

)()(ssMemoryEnergyAcceTEnergyHitT 
Where T= time.

Therefore T(Miss)>> T(Hit). If we minimize the
T(EnergyAccessMemory) then we can reduce the
T(Miss). For that we propose a new strategy for
reduce T(EnergyAaccessMemory).

Fetching the data from disk require at least 1000
more power consumption than buffer [10]. We
used a special buffer in this algorithm to reduce
access time. If cache is full for any miss operation,
then we evict block from cache and move it to
buffer. So all the evicted block from cache moved
to the buffer until the buffer is full shown in Fig1

However, if there is a miss in cache but, hit in
buffer, also known as Partial miss, it require less
time than actual miss.

)()()(ssBufferEnergyAcceTEnergyHitTsPartialMisT 
 (6)

Where T=time and T(EnergyAccessBuffer) <<
T(EnergyAccessMemory).

Therefore by reducing the time of miss we can
minimize the power consumption. Fig. 2 shows the
pseudo code for this strategy.

Fig. 1 Cache replacement strategy using buffer

International Journal of Computer Trends and Technology(IJCTT) – volume X Issue Y–Month 2013

ISSN: 2231-2803 www.internationaljournalssrg.org Page 149

Fig. 1 Pseudo code of LWRP algorithm

2. Replacement strategy

We assume the size of the blocks is equal and
the replacement algorithm is used to manage finite
number of blocks [1,3]. A hit occur when there is a
reference to a block in the cache. A partial hit occur
when there is a reference to a block in the special
buffer. When we have a reference to a block not in
cache and buffer, a miss will occur. When a miss
occur and no free frame available in cache, we
must replace a new block to evicted block.

For replacement we consider three factors. Let Ri
be the recency counter of block i and HitEnergy be
the energy of hit of block. And consider the time
difference ∆Ti =Tci – Tpi where Tci is the time of
last access and Tpi is the time of penultimate
access. Then the weighting value of block can be
calculated as [1]

ii
i

i THitEnergy
RW  *)(

 (7)

When a new block k is placed in the cache then
all the above mentioned parameters in weighting
function must be set, and followed by setting Rk to
0, Hit_Energy to 1 and ∆Tk to 1. We assume that
initial value of Hit_Energy and ∆Tk to 1 because the
time between each cache reference to a block
would be at least 1 in its minimum case. Based on
these three parameters we calculate the weighting
value of every block.

In every access of cache, if reference block j is
in the cache then a hit is occurred and our policy
will work as follow:

1) Ri will be changed to Ri + 1 for every i ≠ j.
2) For i = j first we assign,

ii RT  ,
)()(currentHitEnergyoldHitEnergyHitEnergy 

And then Ri=0.

But if reference block j is in the buffer then
partial hit is occurred and our policy work as
follow:

1) Moves block j from buffer to cache.
2) Set all weighting parameters of block j to

their initial values.
If reference block j is not in the cache and not in

the buffer and no free frame is available then miss
occurs. Then our policy work as follow:

1) Choose the block k which has a highest
weighting value.

2) Change Ri to Ri + 1 for every i ≠ k.
3) Replace a new reference block with block

k.
4) Set all weighting parameters of block k to

their initial values.
The weighting function of block will update in

every access to cache. We are only describing how
our algorithm works, but we have not discussed
how to implement in system mechanism. One
important factor in replacement algorithm is its
overhead in the system [1, 3].

LWRP require storing three parameters to work
and it will add space overhead: first algorithm
require space for counter Ri, need a space for a
HitEnergy and third it needs a space for counter
∆Ti. As well as space for weighting value Wi.
Calculating weighting value after every access to
cache will increase the time overhead to system.

V. CONCLUSION
In this paper we proposed a low power

consumption weighting replacement policy in
which we can minimize the energy of replacement
algorithm.

In future we can simulate our policy and
compare it with other policies like LRU and LFU.
The simulator is a program was designed to run
traces and implement different replacement
algorithm. The obtained hit ratio depends on the
replacement algorithm, locality of reference and the
cache size.

International Journal of Computer Trends and Technology(IJCTT) – volume X Issue Y–Month 2013

ISSN: 2231-2803 www.internationaljournalssrg.org Page 150

REFERENCES
[1] Kaveh Samiee and GholamAli Rezai Rad, “WRP:
Weighting Replacement Policy to Improve Cache
Performance,” International Symposium on Computer Science
and its Application, IEEE, 2008.

[2] Jaafar Alghazo, Adil Akkaboune and Nazeih Botros,
“SF-LRU Cache Replacement Algorithm,” MTDT, IEEE, 2004.

[3] Debabala Swain, Bijay Paikaray and Debabrata
Swain, “AWRP: Adaptive Weighting Replacement Policy to
Improve Cache Performance,” IJournal of Computing, volume
3, Issue 2, February 2011.

[4] Andrew S. Tanenbaum, Modern Operating System,
(Pearson Prentice Hall, 2008).

[5] Elizabeth J. O’Neil, Patrick E. O’Neil and Gerhard
Weikum, “An Optimally Proof of the LRU-K Page Replacement
Algorithm,” Journal of the ACM, vol. 46, No. 1, January 1999,
pp. 92-112.

[6] Donghee Lee, Jongmoo choi, Jong-Hun Kim, Sem
H. Noh, Sang Lyul Min, Yookun Cho, Chong Sang Kim,
“LRFU: A Spectrum of Policies that Subsumes the Least
Recently Used and Least Frequently Used Policies,” IEEE
Transaction on computer, vol. 50, no. 12, December 2001.

[7] Sorav Bansal and Dharmendra S. Modha, “CAR:
Clock with Adaptive Replacement,” USENIX File and Storage
Technologies (FAST), March 31, San Francisco, CA.

[8] G. Memik, G. Reinman and W. Mangione-Sith,
“Reducing Energy and Delay Using Efficient Victim Caches,”
ISLPED’03, 2003.

[9] Nicolaescu D, Veidenbaum A. and Nicolau A.,
“Reducing Power Consumption for High-Associative Data
Cache in Embedded Processor,” Proc. of the design, automation
and test in Europe conf. and exhibition (DATE’03), 2003.

[10] Theodore Johnson and Dennis Shasha, “2Q: A Low
Overhead High Performance Buffer Management Replacement
Algorithm,” Proceeding of the 20th VLDB Conference Santiago,
Chile, 1994

[11] W-T Shiue and C. Chakrabarti, “Memory
Exploration for Low Power Embedded Systems,” DAC, 1999.

[12] M. Shell. (2002) IEEEtran homeage on CTAN.
[Online]. Available: http://www.ctan.org/tex-
archive/macros/latex/contrib/supported/IEEEtran/

