
 International Journal of Computer Trends and Technology (IJCTT) – volume 6 number 4– Dec 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page236

Proactive Web Server Protocol for Complaint Assessment
 G. Vijay Kumar1 Ravikumar S. Raykundaliya2 Dr. P. Naga Prasad3
 M.Tech (CSE), (Ph.D) (M.Tech (IT)), M.Tech (CSE), Ph.D
 Associate Professor Department of IT, ASTRA, Professor of CSE and
 Department of CSE, ASTRA, Hyderabad, INDIA Dean Academics, ASTRA,
 Hyderabad, INDIA Hyderabad, INDIA

 Abstract-Vulnerability Discovery with attack

Injection security threats are increasing for the

server software, when software is developed, the

software tested for the functionality. Due to un-

awareness of software vulnerabilities most of the

software before pre-Release the software should be

thoroughly tested for not only functionality

reliability, but should be tested for the security

flaws (or) vulnerabilities. The approaches such as

fuzzers, Fault injection, vulnerabilities scanners,

static vulnerabilities analyzers, Runtime prevention

mechanisms and software Rejuvenation are

identifying the un-patched software which is open

for security threats address to solve the problem

“security testing”. These techniques are useful for

generating attacks but cannot be extendable for the

new land of attacks. The system called proactive

vulnerability attack injection tool is suitable for

adding new attacks injection vectors, methods to

define new protocol states (or) Specification using

the interface of tool includes Network server

protocol specification using GUI, Attacks

generator, Attack injector, monitoring module at

the victim injector, monitoring module at the victim

machine and the attacks injection report

generation. This tool can address most of the

vulnerabilities (or) security flows.

Keywords: vulnerability (or) security flows,

vulnerability discovery Attack Injection, attack

generator, proactive Protocol.

1. INTRODUCTION

 Network security consists of the provisions

and policies adopted by a network administrator to

prevent and monitor unauthorized access to the

network, misuse, modification, or denial of a

computer network and network-accessible

resources. Network security involves the

authentication of access to data in a network, which

is managed by the network administrator.

 Network is of two types i.e. private and public.

Private network doesn’t need Internet connectivity.

So networks designed in this way are considered

safe from Internet attacks, a part from those

internal threats still exists with the development of

huge open networks, Threats related to security

have grown rapidly in the past few years. Hackers

or Intruders have found out more network

vulnerabilities, and because of the applications that

can be downloaded freely and that require less or

probably no hacking knowledge, troubleshooting

and maintaining deliberated applications and

optimizing networks if gone to the wrong hands

can be used destructively and cause severe threats.

In computer security, vulnerability is considered as

weakness or flaws that allow an attacker to lessen a

system's information assure. Vulnerability is the

union of three elements: a system flaw, flaw

accessed by attacker, and attacker capability to

handle the flaw. To find vulnerability, attackers

should have at least one applicable tool or

technique that can help to find system weakness.

Here, vulnerability can be called as the attack

surface.

 A risk of security can be called as vulnerability.

Uncertainty can be led by the application of

vulnerability. The risk is considered as a potential

of a significant loss. When the affected asset has no

 International Journal of Computer Trends and Technology (IJCTT) – volume 6 number 4– Dec 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page237

value is considered as vulnerabilities without

danger. Vulnerability with number of known

instances of working and fully implemented attacks

is defined as an exploitable vulnerability,

vulnerability for which can use the existing.

2. LITERATURE SURVEY
 A literature review is a text written by someone

to consider the critical points of current knowledge

including substantive findings, as well as

theoretical and methodological contributions to a

particular topic.

2.1 Buffer Overruns

Overview of the Vulnerability

 In low-level language buffer overrun is

recognized as a problem. The main problem is that

program flow control information and user data are

mixed for the sake of performance, and low-level

languages allow direct access to application

memory. Buffer overrun affects the two popular

languages c and c++.

 Buffer overrun is affects crash to the attacker

gaining complete control of the application and if a

high-level user using the application (root,

administrator, or local system), then control of

users who are currently logged on to a system and

the operating system being logged on, or will log

on, will be handled by the attacker. Buffer overrun

is first exploited by an internet worm to the finger

server and is called as the Robert T. Morris (just

Morris) finger worm. Even though it seems that we

have learned how to ignore buffer overruns since

the one which had nearly knocked down the

Internet in 1988, continues reports of buffer

overruns in different types of software are been

referred.

Spotting the Vulnerability Pattern

 Below are the components to look at:

 Input, whether it is read from the network,

from the command line or from a file.

 Data being transferred from meant input to

internal structures.

 Unsafe string handling calls are used.

Testing Techniques to Find the Vulnerability

 Fuzz testing, which means intending your

application to use semi-random inputs, is

recognized one of the effective testing techniques

to use. Increasing the length of input strings while

observing the behavior of the applications are tried.

The mismatches between input checking will result

in relatively small windows of vulnerable code is

what deserved sometime.

2.2 Format String Problems

Overview of the Vulnerability

 Format string problems are one of the few truly

new attacks to surface in recent years. One of the

first mentions of format string bugs was on June

23, 2000.

 As with many security problems, the root cause

of format string bugs is trusting user-supplied input

without validation. In C/C++, format string bugs

can be used to write to arbitrary memory locations,

and the most dangerous side is that this can happen

without tampering with adjoining memory blocks.

On Windows system, application string tables are

generally kept within the program executable, or

resource Dynamic Link Libraries (DLLs). If an

attacker can rewrite the main executable or the

resource DLLs, the attacker can perform many

more straightforward attacks than format string

bugs.

Spotting the Vulnerability Pattern

 Any application that takes user input and passes

it to a formatting function is potentially at risk. One

very common instance of this vulnerability happens

in conjunction with applications that log user input.

Additionally, some functions may apply formatting

internally.

Testing Techniques to Find the Vulnerability

 Pass formatting specifies into the application

and sees if hexadecimal values are given back. For

 International Journal of Computer Trends and Technology (IJCTT) – volume 6 number 4– Dec 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page238

example, if you have an application that expects a

file name and returns an error message containing

the input when the file cannot be found, then try

out giving it file names like NotLikely%x%x.txt. If

you get an error message along the lines of

"NotLikely12fd234104587.txt cannot be found,"

then you have found format string vulnerability.

2.3 Integer Overflows

Overview of the Vulnerability

 Integer overflows, underflows, and arithmetic

overflows of all types, especially floating point

errors, have been problem vulnerability the

beginning of computer programming. Theo de

Radar, of OpenBSD fame, claims integer overflows

are “the next big threat.” The writers of this book

think we are at least three years into the threat.

Spotting the Vulnerability Pattern

 Any application performing arithmetic can

exhibit this vulnerability, especially when one or

more of the inputs are provided by the user, and not

thoroughly checked for validity. Focus especially

on C/C++ array index calculations and buffer size

allocations.

Testing Techniques to Find the Vulnerability

 If the input is character strings, try feeding the

application sizes that tend to cause errors. Like,

strings that are 64K or 64K–1 bytes long can often

cause problems. Other common problem lengths

are 127, 128, and 255, as well as just on either side

of 32K. Any time that adding one to a number

results in either changing sign or flipping back to

zero, you have a good test case.

3. SYSTEM ANALYSIS
 Firewalls follow some simple rules such as to

deny or allow protocols, IP address or port. Some

attacks such as DoS attacks are too complex even

for today's firewalls. The attack cannot be

prevented by firewall because they don’t have the

capability to differentiate between good traffic

from DoS attack traffic. Routers which are places

in between may be affected even before the

firewall gets the traffic.

 Flooding is a kind of Denial of Service (DoS)

attack that is designed in order to bring a network

or service down by flooding it with huge amounts

of traffic. Flood attacks take place when a network

or service becomes too weighted with packets

initiating incomplete connection requests that

restricts genuine connection requests. The first

packet sent across a TCP connection is known as a

"SYN" or "synchronize" packet. For example,

when you contact http://www.google.com, the first

packet your systems out will be a SYN packet to

the HTTP port 80 on www.google.com. Your

browser is telling the web server that it wants to

connect. A SYN flood is a form of denial-of-

service attack in which an attacker sends a

succession of SYN requests to a target's system in

an attempt to consume enough server resources to

make the system unresponsive to legitimate traffic.

Data Tempering is to modify by the addition of a

moderating element. It is necessary to understand

that all methods of data transmission can be easily

toggled by a user and that user data cannot be

considered as reliable.

 A penetration test is a method of evaluating

computer and network security by simulating an

attack on a network or computer system from

external and internal threats. The process involves

a vital analysis of the system, improper system

configuration or poor result is produced from

potential vulnerabilities that could result from the

system, Software flaws or operational faults and

known/unknown hardware in process of technical

preventions. This observation is taken from the

point of a potential attacker and can include

activities exploitation of security vulnerabilities.

Security issues resulting from the penetration test

are represented to the system's owner. Effective

penetration tests will collect this information with a

proper assessment of the potential impacts to the

 International Journal of Computer Trends and Technology (IJCTT) – volume 6 number 4– Dec 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page239

organization and outline a range of procedural

countermeasures and technical to reduce risks.

 Penetration tests are valuable for several causes:

 Attack vector determines the Possibility of a

particular set.

 Combination of lower-risk vulnerabilities

exploited in a particular sequence results in

finding high risk vulnerabilities.

 With the help of automated network or

application vulnerability scanning software

identifying vulnerabilities that may be difficult

or impossible to detect with.

 Assessing the importance of potential business

and operational impacts of successful attacks.

 The Payment Card Industry Data Security

Standard (PCI DSS), and security and auditing

standard, requires both yearly and ongoing

penetration testing are the examples of penetration

tests which is a component of a full security

survey.

4. SYSTEM DESIGN
 In System design we are considering the step as

we are going to exploit the Vulnerability using

following parameters.

Protocol Specification

 The state-of-art tools use protocol specification

as manual approach.

 In this work, proposing automatic extraction of

protocol specification based on packet captures

called pcaps.

 Pcaps can be gathered from live traffic flows

from client to server.

Attack generator

 A TCP Session or a flow can be identified

based on SIP,SP,DIP,DP,Protocol

E.g.: 10.0.0.1, 1010, 10.0.0.2, 80, tcp.

 The module gathers individual flows for each

session.

 Separates Request/Responses.

 Identifies buffer overflow producing patterns

from the requests.

 Replaces patterns with buffer overflow

payloads.

Attack injector

 The attack injector executes each test case

 Interacts with the monitor for the activity of

the server status (crash, hang, etc,).

 The module executes all the test cases one-

after the other.

Target system and monitor

 The module continuously monitors the status

of the server.

 E.g.: If the server is crashed, it informs to the

attack injector module.

Vulnerability Report

 The attack injector executes the attack script.

 The script sends the attack traffic towards the

server.

 If the server hanged or crashed due to the

attack traffic, the monitor confirms the status.

 If status is as expected, the report is prepared

as bug report.

5. SYSTEM ARCHITECTURE
 A System Architecture is the conceptual model

that defines the structure, behavior, and more views

of a system, organized in a way that supports

reasoning about the structures of the system.

 The state-of-art tools use protocol specification

as manual approach. Proposing automatic

extraction of protocol specification based on packet

captures called pcaps. Pcaps can be gathered from

 International Journal of Computer Trends and Technology (IJCTT) – volume 6 number 4– Dec 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page240

Fig 1: System Architecture

live traffic flows from client to server. The module

gathers individual flows for each session. Separates

request/responses. Identifies buffer overflow

causing patterns from the requests. Replaces

patterns with buffer overflow payloads.

 The module prepares executable attack scripts.

Whereas each script as a test case. The process is

repeated for all the flows. The attack injector

executes each test case. The module executes all

the test cases one-after the other. The module

continuously monitors the status of the server. If

the server is crashed, it informs to the attack

injector module. The script sends the attack traffic

towards the server. If the server hanged or crashed

due to the attack traffic, the monitor confirms the

status. If status is as expected, the report is

prepared as bug report.

6. IMPLIMENTATION
Proactive Approach

 We are first using Wire shark tool to capture

packets and then we are Creating Database Tables

to store the packet information, String type test

cases and integer type test cases.

 Protocol Specification, we are analyzing the

Pcaps and find the packet number, source ip,

source protocol, destination ip, destination protocol

and insert this packet information into a table

called packetflow.

 Data Type Identification, we are differentiating

string data type and integer data type from the

captured packets. Here w indicates string and

indicates integer value.

 Test Case Generation, we are creating test cases

for string data which we got into the packet. From

the packet we will use packet no, start index and

end index from the Pcap. And it will be replaced by

string Payload.

 Attack Generation, we are checking the ip

address of client if the ip address is of client then it

will attack and if it is of server means local host

then it will skip.

 We are using FTP Cesar and it a freely available

on internet. FTP Server is having an easy to use

interface; it allows you to set up an anonymous

account in less than a minute. Although its

interface is quite easy, it comes with advanced

configuration options like firewall settings,

user/group controls, statistics, bandwidth control,

remote control of the server and others. Talking

about security, Cesar FTP lets you ban users based

on IP address or hostnames, all connection attempts

can be limited then ban or kick user.

 In General Cesar FTP is a quick, reliable

solution for an FTP server need.

 Easy to use.

 Full control of users and what they are doing.

 Free.

 Attack Generation, we are check that the ip

address is of client or not if it of client it will create

the payload for string and also for integer and it of

server it will skip and find other ip addresses and

send the payload data to the client ip.

 Attack Injector, one array is created and it will

store the injecting test cases and store into

Status.dat file

 Remote Monitor, test case is monitored by the

remote monitor by using test case no and which test

case is running and after 10 seconds it will be

terminated or it will not be opened and if it will

server is crashed then it will be killed by monitor.

 International Journal of Computer Trends and Technology (IJCTT) – volume 6 number 4– Dec 2013

 ISSN: 2231-2803 http://www.ijcttjournal.org Page241

7. CONCLUSION
 We proposed a proactive web server protocol

approach to detect vulnerability from web server so

that confidential data. The penetration test case

study that we have implemented effectively pivot

through discovered ftp server parameters to achieve

its goal. An effective security policy must limit at

the lowest possible this information leakage.

Additionally, system and service configurations

must be carefully revised in order to implement

only the necessary features, preventing critical

information exposures. We have analyzed a

penetration testing case study against a simulated

network setup. Despite this up-to-date security

policy, we have managed to compromise the

internal network, taking advantage of mis-

configurations and security design flaws. In

existing system, it takes protocol specification as

manual and through GUI. The testers are unaware

of the protocol specifications causing usability

issues. Proposed system solves the problem with

pcaps. In this proposed work we have replaced

Pcap data with the desired payload and able to

crash the server by using buffer overflow concept

to get vulnerability from server. This can be used to

prevent the useful data from the organization. And

in future this kind of proactive approach will be

used by bigger companies to prevent their

networks.

REFERENCES
[1] McGraw, G. (2006). Software Security: Building Security

In, Adison Wesley Professional.

[2] The Canadian Institute of Chartered Accountants

Information Technology Advisory Committee, (2003) “Using an

Ethical hacking Technique to Assess Information Security

Risk”, Toronto,Canada.http://www.cica.ca/research-and-

guidance/documents/it-advisory committee/item12038.pdf,

accessed on Nov. 23, 2011.

[3] Mohanty, D. “Demystifying Penetration

TestingHackingSpirits,”http://www.infosecwriters.com/text_res

ources/pdf/pen_test2.pdf, accessed on Nov. 23, 2011.

[4] “Application Penetration Testing,”

https://www.trustwave.com/apppentest.php, accessed on Nov.

23, 2011.

[5] [Online]. Available. http://en.Wikipedia.org/

[6] [Online]. Available. http://www.google.co.in./

First Author: G Vijay Kumar, Associate Professor, CSE Dept,

Aurora’s Scientific Technological and

Research Academy, completed his M.

Tech (CSE) in 2008 and presently

pursuing Ph.D (CSE) in Software

Engineering from JNTU University,

Hyderabad. He published several

research papers in the field of Software

Engineering and Computer Networks. His areas of research are

including Software Engineering, Neural Network and Computer

Networks.

Second Author: Ravikumar S Raykundaliya received his

Bachelor of Engineering (BE) degree

from Sant Gadge Baba Amravati

University in 2011. He is currently

pursuing M. Tech. in Information

Technology, from ASTRA, Bandlaguda

affiliated from Jawaharlal Nehru

Technological University, Andhra

Pradesh. His research interests are in Information and Network

Security, Cloud Computing.

Third Author: Dr. P. Naga Prasad, Professor, CSE Dept, Dean

Academic, Aurora’s Scientific

Technological and Research Academy,

has completed Ph.D in the area of

Artificial Intelligence. He has published

several research papers in Artificial

Intelligence, Fuzzy Logic, and Software

Engineering & Computer Network. He guided many students at

M.Tech & Ph.D level; His research area includes Artificial

Intelligence, Cloud Computing and Security, Software

Engineering and Computer Network and Data Warehouse

Systems.

