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Abstract—The IEEE-754 standard prescribes standards for 

32 bit single precision and 64 bit double precision formats. For 
DSP applications that require a large dynamic range floating 
point implementations are more suitable than fixed point 
representation. This advantage is offset by the cost of the 
implementation. The block floating point (BFP) concept 
combines the precision and cost effectiveness of fixed point 
representations with the increased dynamic range of floating 
point representations. BFP is of particular importance in FPGA 
implementations of DSP algorithms. In this paper the embedded 
multipliers available in present day reconfigurable devices 
facilitate the implementation of efficient BFP architectures for 
DSP applications. 
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I.  INTRODUCTION  
Reconfigurable computing using FPGAs provide a platform 

for efficient implementations of operations required in DSP 
algorithms. The bit level granularity of FPGAs permits the 
choice of standard and non-standard number of representations. 
This allows the use of just the right number of bits and the right 
number of operations on these bits [1]. The ratio of the largest 
number to the smallest number in any number representation is 
called the dynamic range. Certain DSP applications require an 
extended dynamic range which requires the use of floating 
point applications. Single precision and double precision 
representations of the IEEE-754 standard can be used to 
increase the dynamic range. This however comes at the cost of 
increased complexity in the multiply and add operations due to 
separate exponent and mantissa components in floating point 
numbers. Block Floating Point (BFP) algorithm provides a 
technique to reduce the complexity to that of fixed point 
operations. Current day FPGAs provide embedded multipliers 
The implementation of FFT using the concepts of block 
floating point is used as an illustration to highlight the 
advantages while performing the multiply, add and subtraction 
operation intensive DSP algorithms. 

 

A. Fixed and Floating Point Processors 
DSP processors use fractional fixed point representations 

for signal processing applications. Signed numbers between -1 
and 1 can be represented with the binary point immediately 
following the sign bit.  
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 Fig 1.    8 bit Fixed point number 
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Fig 2.    32 bit Floating point number 

B. Embedded Multipliers in FPGAs 
DSP applications are multiplication rich and their 

implementation in FPGAs is facilitated by the construction of 
multipliers using different techniques. Xilinx provides – the 
following implementations for efficient, low latency and high 
performance multipliers – LUT based, DSP48 based or Hybrid 
constructions. This is supported by the Virtex-5, Virtex-6 and 
Spartan-6 families. These signed and unsigned fixed point 
multipliers can support input data widths from 2-64 bits. The 
embedded multipliers are optimized for 18 X 18 bit 
multiplications and hybrid implementations can be used for 
input data sizes larger than 18 bits [4]. 

The Altera Cyclone II FPGAs have around 150 18 X 18 
multipliers. The Stratix V FPGA has a variable precision DSP 
block optimized for 27 X 27 bit or 18 X 36 bit multiplication. 
The availability of these multipliers combined with the 
flexibility of FPGAs makes them suitable for multiply rich 
DSP applications like the Fast Fourier Transform. 

II. BLOCK FLOATING POINT 
Fixed point representations have a higher precision than 

floating point representations of the same word length. This is 
because precision which is given by the size of the LSB of the 
fraction depends upon the word length for fixed point numbers 
and on length of mantissa for floating point numbers. However, 
for the same word length, floating point numbers have greater 
dynamic range than fixed point numbers. In addition, 
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processors using floating point numbers automatically scale the 
numbers to use the full range of the mantissa. DSP applications 
requiring large dynamic range would benefit from the use of 
floating point numbers. This however comes at increased cost 
of complexity of the hardware required as well as increased 
power dissipation. 

Block Floating Point provides a technique to combine the 
advantages of fixed point and floating point representations. 
Block floating point was initially proposed for software 
emulations of floating point operations but is now being used 
in FPGAs. Arithmetic efficiency involves tailoring an operator 
to the right size required for a particular application [1]. FPGAs 
are ideal platforms to tailor operations and number 
representations and operations to the particular application. 

A. Concepts of Block Floating Point 
In block floating point all numbers in the representation 

share a common exponent value. The difference between the 
numbers lies only in the mantissa. Hence the exponent can be 
stored separately and all the operations can be considered as 
being performed on the mantissa components. The operations 
are then similar to those performed by fixed point processors 
on fixed point numbers. This considerably simplifies the 
hardware required and also leads to reduction in power 
consumption [2].  

 

 
                   2 -2    1 bit integer and 23 bit fraction = 1 

 

 
   2 -1         1 bit integer and 23 bit fraction = 2 

  

 
          2 -1   2 -2   1 bit integer and 23 bit fraction = 3 

 

 
     2 0                  1 bit integer and 23 bit fraction = 4    
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Common exponent representing 2 129 – 127 =  2 2                                   

Fig 4.    Block Floating Point Representation 

The value of the exponent used as the common exponent is 
that of the largest in the block of numbers under consideration. 
The exponents of the numbers in the final results can then be 
adjusted so that the dynamic range is completely utilized. The 
scaling of the numbers by shifting them so as to obtain a 
common exponent increases the dynamic range and 
computations on the mantissa emulate the precision of fixed 
point numbers. 

B. Radix 2 FFT 
Radix 2 FFT is more suitable for maintaining precision 

levels and therefore two Radix 2 stages are preferred over a 
single Radix 4 stage. Figure 3 shows the butterfly diagram of a 
single stage of Radix 2 Decimation in Time (DIT) FFT. 

 
Fig 3.    Radix 2 DIT FFT Butterfly Stage 

 The input, output and twiddle factor values can be complex 
valued. The real and imaginary parts of the input and twiddle 
factor must be considered separately while determining bit 
growth. 
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The Figure 4 below shows an 8 point DIT FFT which will 
be used as the basic DSP computation to illustrate the block 
floating point algorithm implementation using FPGAs. 

 

 
Fig 5.    8 Point DIT FFT 

C. Block Floating Point Algorithm 
Block AGC (Automatic Gain Control) is a technique that 

scales the values at the input stage of the DSP application like 
the Fast Fourier Transform (FFT). This scaling is done to 
increase the precision while at the same time providing an 
extended dynamic range. This concept is extended to the inputs 
of each stage of the FFT to predict the bit growth at each stage. 
This predicted bit growth is used to scale the inputs so that the 
full dynamic range can be used. 

For an N point FFT where N is a power of 2, the twiddle 
factors of the first stage, W0

N and WN
N have a value 1 + j0. 

Equations (1) and (2) show that in this case the maximum bit 
growth in this stage is 2 as the inputs A and B have real and 
imaginary values less than 1. 

0 0 1 0 0 0 0 0 0 . . 0 0 

0 1 0 0 0 0 0 0 0 . . 0 0 

0 1 1 0 0 0 0 0 0 . . 0 0 

1 0 0 0 0 0 0 0 0 . . 0 0 
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The second stage twiddle factors are W0
N, WN/4

N and WN
N 

which have values 1 + j0, 0 – j, 1 + j0 respectively. This again 
leads to a maximum growth factor for the second stage of 2.  

In the rest of the stages the twiddle factors can have both 
real and complex values, resulting in growth factors of more 
than 2. The maximum growth factor is determined by finding 
the maximum magnitudes of C and D. Equations (1) and (2) 
can be rewritten as follows: 

C = (Ar + Brcosφ - Bisinφ) + j(Ai +  Bicosφ + Brsinφ)       (3) 

D = (Ar - Brcosφ + Bisinφ) + j(Ai -  Bicosφ - Brsinφ)        (4) 

The maximum values for C and D are obtained when the real 
and imaginary components of A and B are at their maximum 
values of 1 or -1. In addition, the three components in the 
brackets in equations (3) and (4) have to be of the same sign 
and φ has a value that leads to a maximum. 
  
 To determine the value of φ the derivative of (1 ± cosφ ± 
sinφ) with respect to φ is set equal to 0, yielding values of 
  
 φ = Π/4 + n Π/2, n = 0,1,2,….∞ 
 
The maximum growth factor is determined to be 2.4142 bits 
(≈2bits). 
 
 This analysis shows that to maintain precision by 
preventing overflow, the input values to the first two stages 
have to be scaled to allow a maximum bit growth of 1 and the 
rest of the stages have to be scaled to allow a maximum bit 
growth of 2. At each stage the maximum bit growth in the real 
and imaginary parts of the output is determined and the 
required scaling is applied if necessary. If there is no bit growth 
no scaling is done. This allows maximizing of the dynamic 
range while preventing overflow [2]. 
  

III. IMPLEMENTATION AND SIMULATION 
The 8 point DIT FFT implementation was used to illustrate 

the use of block floating point arithmetic in DSP computations. 
Three hardware based designs for the Fast Fourier Transform   
were implemented on the Virtex6 FPGA. 

The first design implemented a fixed point FFT 
computation using 32 bit fixed point numbers. The format of 
the fixed point number with one sign bit, one integer bit and 30 
fractional bits limits the range of numbers from -2 to +2. Fixed 
point arithmetic adders and multipliers exploiting the DSP 
blocks of the Virtex6 FPGA have been designed for 
performing the required fixed point computations.   

The second design is implemented using 32 bit IEEE 754 
single precision floating point numbers having one sign bit, 
eight exponent bits, 23 fractional bits for the mantissa and an 
implied bit of value 1 for the integer part of the mantissa. This 
gives a larger dynamic range of - 2 -126 to (2-2 -23)x2 127 for 
normalized numbers. 32 bit floating point adder and multiplier 
modules have been used for this implementation. 

In the third design, the block floating point concept has 
been implemented combining the increased dynamic range of 

floating point representations and the reduced area requirement 
of fixed point representations. The inputs are represented as 32 
bit single precision floating point numbers. An align operation 
is used to align the smaller exponents so that all numbers have 
a common exponent which is the largest among the block of 
inputs. The exponents are not considered further in the FFT 
computations.  

The de normalized mantissa of the numbers are used as 
inputs to the FFT computation which is now performed on 25 
bit numbers that includes a 1 bit sign, 1 bit integer part and 23 
bit fractional part. The arithmetic units implementing addition 
and multiplication perform 25 bit fixed point computation. A 
constant scaling of 1 bit is performed on the outputs of the first 
stage before applying them to the second stage. A similar 
scaling of 2 bits is performed on the outputs of the second stage 
to prevent overflow.  

A final stage combines the fixed point FFT block outputs 
and the exponent. It performs a normalizing operation so that 
the outputs are in the IEEE 754 format for single precision 
numbers.  

A. Simulation and Implementation Results 
 

The results of the FFT computation of the three 
architectures are identical due to the use of scaling to prevent 
overflow in the fixed point and block floating point 
architectures. 
 

A comparison of the hardware complexity of the 
architectures is given in the table below: 
 

TABLE I.  RESOURCE UTILIZATION 

 

Design 
Resource Utilization (Target Device xc6vlx75t-3ff484) 
No of Slice LUTs No of Slices No of DSP48E1s 
Used Utilization Used Utilization Used Utilization 

32bit 
Fixed 
Point 

13243 28 % 4396 37 % 126 43 % 

Single 
Precision 
Floating 
Point 

44986 96 % 11450 98 % 40 13 % 

Block 
Floating 
Point 

9652 20 % 2766 23 % 48 16 % 

 
 
As operations are performed on 32 bit fixed point operands, 
the first design shows increased resource utilization over the 
Block floating point design in which computations are 
performed on 23 bit operands. The precision is more for 32 bit 
fixed point when compared with 23 bit operands. However, as 
the design uses floating point numbers the dynamic range is 
more. The use of scaling to prevent overflow preserves 
accuracy in both architectures. 
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 A comparison of the single precision floating point 
architecture and the block floating point design reveals a large 
resource requirement for the design that does not use the block 
floating point concept. This can be attributed to the fact that 
use of single precision floating modules for operation of 
addition, subtraction and multiplication requires alignment of 
the exponents of the operands and corresponding shifting of 
the mantissa prior to the computation. Once the actual 
computation has been performed the output of each 
computation has to be normalized to the IEEE 754 single 
precision format. 
 
 This is the major advantage of the Block floating 
point architecture as the alignment is performed only once for 
all numbers to align the exponents to a common exponent at 
the onset of the FFT computation. The rest of the 
computations are performed on the mantissa of each number. 
Only a single stage of normalization at the end of the FFT 
computation has to be carried out to normalize the final FFT 
outputs. This has resulted in a drastic reduction in resource 
utilization while maintaining the dynamic range. 
 
 Table II below compares the power-delay product of 
the three architectures.  
 

TABLE II. POWER-DELAY PRODUCT 

Design Delay 
(ns) 

Power 
(mW) 

Power-Delay 
Product 

32bit Fixed Point 48.759 1156.21 56,375.643 

Single Precision 
Floating Point 166.519 1065.87 177,487.607 

Block Floating Point 37.189 1279.44 47,581.094 
 
 

The performance of the Block floating point 
architecture is better than the other two architectures in terms 
of the delay of the critical path. The power consumption of the 
32 bit fixed point architecture is the least of the three designs. 

The power-delay product of the Block floating point is 
significantly lower than the other two designs. 

 

IV. CONCLUSION 

The implementation results of the 8 point Radix 2 DIT FFT 
are used to highlight the application of the Block floating Point 
(BFP) concept to computation of DSP algorithms on FPGAs. 
Effort has also been taken to ensure the design utilizes the 
embedded DSP resources like multipliers in present day 
reconfigurable devices. The Block Floating Point architecture 
requires significantly fewer resources and is thus cost effective 
when compared to the designs implementing fixed point as 
well as floating point computations. It also shows improvement 
in the power-delay product. The BFP implementation can be 
further improved by providing dynamic scaling between stages 
rather than the static one used in this design. Also, 
reconfigurable computing, particularly for real time 
applications does not need to adhere to the standard formats for 
operand representation. Operand size can be chosen as per the 
requirements of the application which will further lead to more 
efficient implementations. 
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