

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 2 –Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page84

Improved Clustering And Naïve Bayesian Based
Binary Decision Tree With Bagging Approach

Medeswara Rao

Kondamudi
Mtech Student ,VVIT

Sudhir Tirumalasetty
CSE , Assoc Prof , VVIT

Abstract –

Decision Trees provide an attractive classification scheme
which is responsible for making reliable decisions and
possibly interpret them. Bayesian averaging over Decision
trees allows estimating on attributes to assess the class
posterior distribution and estimates the chance of making
misleading decisions. The clustering problem has actually
been addressed in several contexts in plenty of disciplines;
due to this problem experimental data needs to clean the
data before applying the data mining techniques. In this
paper a new framework is proposed by integrating decision
tree based attribute selection for data clustering.

Keywords – Decision tree, Classifier, NaiveBayes.

I. INTRODUCTION

The quantification of uncertainty in decisions is of crucial
important for medical systems. Bayesian averaging over
decision models allows clinicians to evaluate the class
posterior distribution and therefore to estimate the risk of
making misleading decisions. The use of Decision Trees
(DTs) allows experts to understand how decisions are
made. Data analysis procedures can easily be
dichotomized as either exploratory or confirmatory,
driven by availability of appropriate models for your data
source, but a key element in each of varieties of
procedures (whether for hypothesis formation or
decision-making) is the grouping, or classification of
measurements in accordance to either (i) goodness-of-fit
to the postulated model, or (ii) natural groupings
(clustering) revealed through analysis. Cluster analysis is
the organization of a variety of patterns (usually
represented to be the vector of measurements, or possibly
a point inside a multidimensional space) into clusters
based upon similarity. Intuitively, patterns in the context
of a valid cluster are usually more similar to each other
than they're to a pattern part of a distinct cluster.
Clustering is a vital method in data warehousing and data
mining. It groups similar object together within a cluster
(or clusters) and dissimilar object in other cluster (or
clusters) or remove from the clustering process. That

really is, in fact its's an unsupervised classification in
data analysis that arises in many applications in
numerous fields such as data mining[3], image
processing, machine learning and bioinformatics. Since,
in fact its's an unsupervised learning method, it does not
need train datasets and pre-defined taxonomies. Fact is
that there are several special requirements for search
result pages clustering algorithms, two of which most
important is, clustering performance and meaningful
cluster description. Plenty of clustering technique is
available, among those hierarchical clustering and
Partition Clustering happens to be the widely used
clustering methods. A Partition-clustering algorithm with
their outputs produce one clustering set that involves
disjoint clusters, i.e., the comprehensive data description
is flat. Basically, partitioned clustering is nothing but pre-
defined large number of partition range. In which the
total number of partition (k) range should be less than
number of object (n) among the dataset. Partition
clustering always should satisfy the condition k < n.
A Hierarchical clustering is naturally a nested of
partitions technique depend on the business requirements.
It produces not merely one clustering taking place in their
outputs except a hierarchy of clusters. This procedure
function for both type of approach either bottom up and
top down approach. Within this method all record object
arranged between a huge cluster, then big cluster are
continuously divided into small clusters.

There are actually mainly two machine learning
strategies [2]:
1) Supervised learning
In supervised learning, the system is supplied with the
appropirate discuss each training example. The work of
one's system is to discover this relationship connecting
the input examples, and of course the answers.
For instance, a system just might be shown various
images of faces, where each one has domain. The
machine could then be shown a different image perhaps
one of the faces, and will output the name of a given face.
2) Unsupervised Learning Strategy
In unsupervised learning, the operating system is not
provided with any answers, or correct outputs. The
academic process usually aims to locate patterns and
correlations within the data. For instance, a store could

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 2 –Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page85

record the items that people buy; a learning system could
then find correlations between different items that may
bought together.

Decision tree induction [1], will be the learning of
decision trees from class-labeled training tuples. A call
tree serves as a flowchart-like tree structure, where each
internal node (nonleaf node) denotes a test traveling on
an attribute, each branch represents an outcome of the
test, and each leaf node (or terminal node) holds a class
label. The topmost node inside a tree is the root node.
Instances are classified beginning from the main node
and sorted dependent on their feature values. The leaf
node reached is regarded as the instruction label for that
example. The algorithm can naturally handle binary or
multiclass classification problems. The leaf nodes can
refer to either of the K classes concerned.

Fig. 1 shows an example of a decision tree for the
training set of Table 1.
The feature that best divides the training data would be
the root node of the tree. The same procedure is then
repeated on each partition of the divided data, creating
subtrees until the training data is divided into subsets of
the same class[1].

Fig. 1: An example decision tree

AN EXAMPLE DATA SET
attr1 attr2 attr3 Class
a1 b2 c3 1
a2 b1 c2 2
a3 b1 c1 3
a2 b1 c3 2
a1 b2 c2 1
a3 b3 c1 3
a1 b3 c2 2
a1 b2 c1 1
a3 b3 c2 1

1. Create a root node for the tree that best classifies
examples
2. A ← best decision attribute for next node
a. assign A as decision attribute for the node
b. for each value of A, create new descendant of node
c. sort training examples to leaf node
d. if training examples are perfectly classified then stop
else, iterate over new leaf nodes.

Apart from hierarchical
binary classifiers, two popular techniques for binary
classification have also been used: One-Versus-All
(OVA)
and One-Versus-One (OVO). In addition, we utilize a
method of using all binary classifiers to observe the
performance of the hierarchical binary classifier. Since
building all hierarchical binary classifiers is computation
intensive, we propose a greedy technique for building
hierarchical binary classifiers. Feature selection is an
important step in the design of a classification system.
Selecting a good subset of features decreases
computational load and can also improve accuracy.
Including random or noisy features can cause classifiers
to learn incorrect associations.

II. LITERATURE SURVEY

Multiclass classification problem would be to map
information samples into a little more than two classes.
There's only two main approaches for solving multiclass
classification problems. The first approach deals directly
with the multiclass problem and uses algorithms like
Decision Trees, Neural Networks [1], k-Nearest
Neighbor and Naive Bayesian classifiers. The main
trouble with this method is to determine features which
can distinguish classes when the wide range of classes
increases. Consequently, this procedure is likely to yield
lower accuracy. A classification algorithm for data
streams must meet several different requirements from
the traditional setting (Bifet et al., 2009). The most
significant are the following. First, process one example
at a time, and inspect it at most once. The data examples
flow in and out of a system one after another. Each
example must be accepted in the order in which it arrives.
Once inspected or ignored, the example is discarded with
no way to retrieve it. Second, use a limited amount of
memory. Memory will be easily exhausted without
limiting its allocation since the amount of the data is
potentially infinite. Third, work in a limited amount of
time. Though most conventional algorithms are fast
enough when classifying examples, the training processes
are time consuming. For an algorithm to scale
comfortably to any number of examples, its training
complexity must be linear to the number of examples,
such that online learning is possible. Fourth, be ready to
perform classification at any time. This is the so-called
any-time property, which indicates that the induction
model is ready to be applied at any point between
training examples[1].

Decision tree induction algorithms on data streams
Decision tree is one of the most often used techniques in
the data mining literature. Each node of a decision tree
contains a test on an attribute. Each branch from a node
corresponds to a possible outcome of the test and each
leaf contains a class prediction. A decision tree is
constructed by recursively
replacing leaves by test nodes, starting at the root. The

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 2 –Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page86

attribute to test in a leaf is chosen by comparing all
available attributes and choosing the best one[2].
according to some heuristic evaluation function. Classic
decision tree learners like ID3, C4.5, and CART assume
that all training examples can be stored simultaneously in
memory, and thus are severely limited in the number of
examples from which they can learn.
Predictive clustering

In particular, the predictive modeling methods that
partition the examples into subsets, e.g., decision trees
and decision rules, can also be viewed as clustering
methods.Namely, a decision tree can be regarded as a
hierarchy of clusters, where each node is a cluster; such a
tree is called a clustering tree. Likewise, a decision rule
can represent a cluster of examples which it covers. The
benefit of using these methods for clustering is that, in
addition to the clusters themselves, we also get symbolic
descriptions of the constructed clusters. Every cluster in a
tree has a symbolic description in the form of a
conjunction of conditions on the path from the root of the
tree to the given node, and every cluster represented by a
rule is described by the rule’s condition. There is,
however, a difference between ‘tree’ clusters and
‘rule’[4] clusters. ‘Tree’ clusters are ordered in a
hierarchy and do not overlap, while ‘rule’ clusters in
general are not ordered in any way (they are flat) and can
overlap (one example can belong to more than one
cluster). We can say that clustering trees are a
hierarchical clustering method, and clustering rules are a
partitional (and possibly fuzzy) clustering method.

Brieman, Friedman, Olshen, and Stone developed the
CART algorithm in 1984. It builds a binary tree.
Observations are split at each node by a function on one
attribute. The split is selected which divides the
observations at a node into subgroups in which a single
class most predominates. When no split can be found that
increases the class specificity at a node the tree has
reached a leaf node. When all observations are in leaf
nodes the tree has stopped growing. Each leaf can then be
assigned a class and an error rate (not every observation
in a leaf node is of the same class). Because the later
splits have smaller and less representative samples to
work with they may overfit the data. Therefore, the tree
may be cut back to a size which allows effective
generalization to new data. Branches of the tree that do
not enhance predictive classification accuracy are
eliminated in a process known as "pruning."

III. PROPOSED SYSTEM

The major advantage of the Naïve Bayes classifier is that
it requires short time for training the classifier. Also, each
training example has an effect on the prediction and each
training example in turn would increase/decrease the
probability that a prediction is correct. However, the

assumption of independence among attributes is not true
always and hence the accuracy of Naïve Bayes classifier
is unstable.

DATASET FILE FORMATS
In this project two types of file formats are used.
They are

i) CSV

ii) ARFF

i. CSV: It stands for Comma Separated
Value. This format is obtained using
MS-Excel. KDD99 dataset is loaded into
Excel and then it is saved with an
extension of csv.

ii. ARFF: It stands for Attribute Relation
File Format. An file is an ASCII text file
that describes a list of instances sharing a
set of attributes. ARFF files were
developed by the Machine Learning
Project at the Department of Computer
Science of The University of Waikato for
use with the Weka machine learning
software

ARFF files have two distinct sections. The first
section is the Header information, which is
followed the Data in The ARFF Header Section

The ARFF Header section of the file contains the
relation declaration and attribute declarations.

The @relation Declaration

The relation name is defined as the first line in the
ARFF file. The format is:

Training data

Selected
Attributes

Improved Kmeans
approach

Results

Binary Decision
Trees

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 2 –Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page87

@relation <relation-name>

where <relation-name> is a string. The string must
be quoted if the name includes spaces.

The @attribute Declarations:

Attribute declarations take the form of an orderd
sequence of @attribute statements. Each attribute
in the data set has its own @attribute statement
which uniquely defines the name of that attribute
and it 's data type. The order the attributes are
declared indicates the column position in the data
section of the file. For example, if an attribute is
the third one declared then Weka expects that all
that attributes values will be found in the third
comma delimited column.

The format for the @attribute statement is:
 @attribute <attribute-name>
<datatype>
where the <attribute-name> must start with an
alphabetic character. If spaces are to be included in
the name then the entire name must be quoted.

The <datatype> can be any of the four types
currently (version 3.2.1) supported by Weka:

 numeric

 <nominal-specification>

 string

 date [<date-format>]

where <nominal-specification> and <date-format>
are defined below. The keywords numeric, string
and date are case insensitive.

Nominal attributes

Nominal values are defined by providing an
<nominal-specification> listing the possible
values: {<nominal-name1>, <nominal-name2>,
<nominal-name3>, ...}

String attributes

 String attributes allow us to create attributes
containing arbitrary textual values. String
attributes are declared as follows:

 @ATTRIBUTE name string

Decision tree is a tree structure, where internal nodes
denote a test on an attribute, each branch represents the
outcomes of the test and the leaf node represents the class
labels. Decision tree induction is the learning of decision
trees from class-labeled training tuples. Construction of
decision trees is simple and fast, and does not need any

domain knowledge and hence appropriate for exploratory
knowledge discovery. In general, decision tree classifiers
have good accuracy, but successful use of it depends on
the data at hand. Decision trees are used for classification
and classification rules are easily generated from them.
An unknown tuple X can be classified, given its attribute
values by testing the attribute values against the decision
tree. The general decision tree algorithm takes the
training data set, attribute list and attribute selection
method as input. The algorithm creates a node, and then
applies attribute selection method to determine the best
splitting criteria and the created node is named by that
attribute. Subset of training tuples is formed using the
splitting attribute. The algorithm is called recursively for
each subset, till the subset contains tuples of same class.
When the subset contains tuples from the same class a
leaf is attached with a label of the majority class in the
training set from the root. ID3, C4.5, and CART adopt a
greedy, non-backtracking approach in which decision
trees are constructed in a top-down recursive divide-and-
conquer.

Feature Selection

A preprocessing technique feature selection identifies and
removes irrelevant attributes that do not play any role in
the classification task. Several feature selection methods
are available with different search techniques to produce
a reduced data set. This reduced data set improves
accuracy compared with original dataset. Feature
selection does not alter the relevance or meaning the data
set. The feature selection methods are categorized as
filter, wrapper and hybrid. The result of these methods
varies in time and accuracy.

ROBUST BAGGING ALGORITHM:

A bagging algorithm for multiple classification into
several classes.
1 Initialisation of the training set D
2 for m = 1, ..., M
2.1 Creation of a new set Dm of the same size D by
random selection of training examples from the set D
(some of examples can be selected repeatedly and some
may mot be selected at all).
2.2 Learning of a particular classifier Hm: Dm → R by a
given machine learning algorithm based on the actual
training set Dm.
3. Compound classifier H is created as the aggregation of
particular classifiers Hm: m = 1, ...,M and an example di
is classified to the class cj in accordance with the number
of votes obtained from particular classifiers Hm.

If it is possible to influence the learning procedure
performed by the classifier Hm directly, classification
error can be minimised also by Hm while keeping
parameters αm constant.
step 4: For each continuous attributes in D find the each

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 2 –Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page88

adjacent pair of continuous attribute
values that are not classified into the same class value for
that continuous attribute
Step 5: Calculate the prior probabilities P(Cj) and
conditional probabilities P(Aij|Cj) in D.
Step 6: Classify all the training examples using these
prior and conditional probabilities, P(ei
 |

Cj) = P(Cj) ∏k=1→p P(Aij | Cj).
Step 7: Update the class value for each example in D
with Maximum Likelihood (ML) of posterior
probability,

P(Cj|ei); Cj = Ci→ PML(Cj|ei).
Step 8: Recalculate the prior P(Cj) and conditional
P(Aij|Cj) probabilities using updated class values in D.

Cluster analysis
Clustering finds groups of similar data either by
partitioning data into k subsets (partitioning methods) or
creating a hierarchical decomposition of the data
(hierarchical methods) or building groups of data based
on density, Hierarchical clustering creates a hierarchy of
data records and subsets either by dividing the whole data
set until a given size of subsets (divisive approach) or
agglomerating records into subsets until all records
belong to a given number of sets or one set
(agglomerative approach). Division and merging is based
on the distance between groups called linkage that can be
calculated as the distance between closest or center points
of groups as well as distance among all points of different
groups

IMPROVED KMEANS:

The pseudo code for the adapted kMean

algorithm is presented as below:

1. Choose random k data points as initial Clusters Mean

(cluster center)

2. Repeat

3. for each data point x from D

4. Computer the distance x and each cluster mean

(centroid)

5. Assign x to the nearest cluster.

6. End for

7. Re-compute the mean for current cluster collections.

8. Until reaching stable cluster

9. Use these centroid for normal and outlier.

10. Calculate distance of centroid from normal and

outlier centroid points.

11. If distance(X, Dj) > = thres

12. Then outlier found ; exit

13. Else then

14. X is normal;

IV.EXPERIMENTAL RESULTS

All experiments were performed with the configurations
Intel(R) Core(TM)2 CPU 2.13GHz, 2 GB RAM, and the
operating system platform is Microsoft Windows XP
Professional (SP2).

Selected attributes: 1,2,3,4,6,7,8,9 : 8
 RI
 Na
 Mg
 Al
 K
 Ca
 Ba
 Fe

All the best NBDTrees:

IMPROVED BINARY DECISION TREE USING
NAIVE BAYES AND CLUSTERING TREE

Ba <= 0.27
| Mg <= 2.41
| | K <= 0.11
| | | RI <= 1.52068: tableware (11.0)
| | | RI > 1.52068: build wind non-float (4.0)
| | K > 0.11
| | | Na <= 13.49: containers (14.0/1.0)
| | | Na > 13.49: build wind non-float (5.0/1.0)
| Mg > 2.41
| | Al <= 1.41
| | | RI <= 1.51689
| | | | Fe <= 0.17: vehic wind float (7.0/1.0)
| | | | Fe > 0.17: build wind float (2.0)
| | | RI > 1.51689
| | | | K <= 0.23
| | | | | Mg <= 3.56: build wind non-float (2.0/1.0)

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 2 –Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page89

| | | | | Mg > 3.56
| | | | | | RI <= 1.52127
| | | | | | | RI <= 1.52101: build wind float (5.0/1.0)
| | | | | | | RI > 1.52101: vehic wind float (3.0)
| | | | | | RI > 1.52127: build wind float (16.0/1.0)
| | | | K > 0.23
| | | | | RI <= 1.518: build wind float (34.0/2.0)
| | | | | RI > 1.518
| | | | | | Mg <= 3.6
| | | | | | | RI <= 1.52119: build wind float
(11.0/1.0)
| | | | | | | RI > 1.52119: headlamps (2.0)
| | | | | | Mg > 3.6: build wind non-float (16.0)
| | Al > 1.41
| | | Ca <= 8.89
| | | | Fe <= 0.16: build wind non-float (39.0/1.0)
| | | | Fe > 0.16
| | | | | Ba <= 0.0
| | | | | | Na <= 12.87: build wind float (4.0)
| | | | | | Na > 12.87: build wind non-float (3.0/1.0)
| | | | | Ba > 0.0: build wind non-float (4.0)
| | | Ca > 8.89: vehic wind float (4.0/1.0)
Ba > 0.27: headlamps (28.0/2.0)

Number of Leaves : 20

Size of the tree : 39

 Correctly Classified Instances 207 96.729
%
Incorrectly Classified Instances 7 3.271 %
Mean absolute error 0.0471
Relative absolute error 22.2462 %
Total Number of Instances 214

IRIS DATASET:

Selected attributes: 3,4 : 2
 petallength
 petalwidth

All the best NBDTrees:

IMPROVED BINARY DECISION TREE USING
NAIVE BAYES AND CLUSTERING TREE

petalwidth <= 0.6: Iris-setosa (54.0)
petalwidth > 0.6
| petalwidth <= 1.7
| | petallength <= 4.9: Iris-versicolor (48.0/1.0)
| | petallength > 4.9
| | | petalwidth <= 1.5: Iris-virginica (4.0)
| | | petalwidth > 1.5: Iris-versicolor (3.0/1.0)
| petalwidth > 1.7: Iris-virginica (41.0)

Number of Leaves : 5

Size of the tree : 9
 Correctly Classified Instances 147 98 %
Incorrectly Classified Instances 3 2 %
Mean absolute error 0.0272
Relative absolute error 6.1228 %
Total Number of Instances 150

0

0.5

1

1.5

Iris

glass

Iris 0.98 0.2 0.006

glass 0.96729 0.327 0.191

Accuracy Error Time(msec
s)

0

0.5

1

1.5

Iris

glass

Iris 0.98 0.2 0.006

glass 0.96729 0.327 0.191

Accurac
y

Error Time(ms
ecs)

Above two graphs shows that accuracy,error
and time of execution to different datasets.

V. CONCLUSION AND FUTURE SCOPE

In this paper, we analyzed on the construction of binary
decision tree model using naïve bayes and bagging
approach, and clustering method. We propose a new
condition of generating terminal nodes so that the
decision tree is optimized in the number of nodes and
leaves. In addition, the speed is also improved. But when
dataset has small number of attributes, the precision will
be influenced.Experimental results give better results
appro > 96 % with different datasets are tested. The
pruning method of this algorithm will be also studied in
future work.

 International Journal of Computer Trends and Technology (IJCTT) – volume 5 number 2 –Nov 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page90

REFERENCES

[1] An Empirical Analysis of Multiclass Classification
Techniques in Data Mining Radhika Kotecha, Vijay
Ukani and Sanjay Garg.
[2] W. R. Smart, Genetic programming for multiclass
object classification,” Master's thesis, Victoria University
of Wellington, New Zealand, 2005.
[3] Quinlan JR, “Simplifying decision trees,” J.
International Journalof ManMachine Studies, vol.27, pp.
221-234, 1987
[4] Quinlan JR, "Learning efficient classification
procedures and their application to chess and games[A],”
Machine Learning: an artificial intelligence approach [C
]. San Mateo, CA: Morgan Kaufmann, 1983, pp. 463-48
[5] Minos Garofalakix. DongJoon Hyun. Rajeev Rastogi.
Kyuseok Shim, “Building Decision Trees with
Constraints,” Data Mining and Knowledge Discovery,
vol.27,pp. 187–214 2003
[6] Wang Xizhao,Yang Chenxiao,”Merging-Branches
Impact on Decision Tree Induction,” Journal of
Computers, vol.30 No.8,pp. 1251-1258, 2007(Chinese)
[7] Zhou Yatong,Zhang Taiyi,Luzhaogan, “Decision Tree
Model Based on Bayesian Inferenc,” Journal of Xi an
Jiaotong University, vol.40, pp. 888-891, 2006(chinese)4

