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Abstract –  
 
Decision Trees  provide an attractive classification scheme 
which is  responsible for making reliable decisions and 
possibly interpret them. Bayesian averaging over Decision 
trees allows estimating on attributes to assess the class 
posterior distribution and estimates the chance of making 
misleading decisions. The clustering problem has actually 
been addressed in several contexts in plenty of disciplines;  
due to this problem experimental data needs to clean the 
data before applying the data mining techniques. In this 
paper a  new framework is proposed by integrating decision 
tree based attribute selection for data clustering.   
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I. INTRODUCTION 
 
The quantification of uncertainty in decisions is of crucial 
important for medical systems. Bayesian averaging over 
decision models allows clinicians to evaluate the class 
posterior distribution and therefore to estimate the risk of 
making misleading decisions. The use of Decision Trees 
(DTs) allows experts to understand how decisions are 
made. Data analysis procedures can easily be 
dichotomized as either exploratory or confirmatory, 
driven by availability of appropriate models for your data 
source, but a key element in each of varieties of 
procedures (whether for hypothesis formation or 
decision-making) is the grouping, or classification of 
measurements in accordance to either (i) goodness-of-fit 
to the postulated model, or (ii) natural groupings 
(clustering) revealed through analysis. Cluster analysis is 
the organization of a variety of patterns (usually 
represented to be the vector of measurements, or possibly 
a point inside a multidimensional space) into clusters 
based upon similarity. Intuitively, patterns in the context 
of a valid cluster are usually more similar to each other 
than they're to a pattern part of a distinct cluster. 
Clustering is a vital method in data warehousing and data 
mining. It groups similar object together within a cluster 
(or clusters) and dissimilar object in other cluster (or 
clusters) or remove from the clustering process. That  
 
 
 
 

 
 
 
 
really is, in fact its's an unsupervised classification in 
data analysis that arises in many applications in  
numerous fields such as data mining[3], image 
processing, machine learning and bioinformatics. Since,  
in fact its's an unsupervised learning method, it does not 
need train datasets and pre-defined taxonomies. Fact is 
that there are several special requirements for search 
result pages clustering algorithms, two of which most 
important is, clustering performance and meaningful 
cluster description. Plenty of clustering technique is 
available, among those hierarchical clustering and 
Partition Clustering happens to be the widely used 
clustering methods. A Partition-clustering algorithm with 
their outputs produce one clustering set that involves 
disjoint clusters, i.e., the comprehensive data description 
is flat. Basically, partitioned clustering is nothing but pre-
defined large number of partition range. In which the 
total number of partition (k) range should be less than 
number of object (n) among the dataset. Partition 
clustering always should satisfy the condition k < n. 
A Hierarchical clustering is naturally a nested of 
partitions technique depend on the business requirements. 
It produces not merely one clustering taking place in their 
outputs except a hierarchy of clusters. This procedure 
function for both type of approach either bottom up and 
top down approach. Within this method all record object 
arranged between a huge cluster, then big cluster are 
continuously divided into small clusters. 
 
There are actually mainly two machine learning 
strategies [2]: 
1) Supervised learning 
In supervised learning, the system is supplied with the 
appropirate discuss each training example. The work of 
one's system is to discover this relationship connecting 
the input examples, and of course the answers. 
For instance, a system just might be shown various 
images of faces, where each one has domain. The 
machine could then be shown a different image perhaps 
one of the faces, and will output the name of a given face. 
2) Unsupervised Learning Strategy 
In unsupervised learning, the operating system is not 
provided with any answers, or correct outputs. The 
academic process usually aims to locate patterns and 
correlations within the data. For instance, a store could 
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record the items that people buy; a learning system could 
then find correlations between different items that may 
bought together. 
 
Decision tree induction [1], will be the learning of 
decision trees from class-labeled training tuples. A call 
tree serves as a flowchart-like tree structure, where each 
internal node (nonleaf node) denotes a test traveling on 
an attribute, each branch represents an outcome of the 
test, and each leaf node (or terminal node) holds a class 
label. The topmost node inside a tree is the root node. 
Instances are classified beginning from the main node 
and sorted dependent on their feature values. The leaf 
node reached is regarded as the instruction label for that 
example. The algorithm can naturally handle binary or 
multiclass classification problems. The leaf nodes can 
refer to either of the K classes concerned. 
 
Fig. 1 shows an example of a decision tree for the 
training set of Table 1. 
The feature that best divides the training data would be 
the root node of the tree. The same procedure is then 
repeated on each partition of the divided data, creating 
subtrees until the training data is divided into subsets of 
the same class[1]. 

 
 
Fig. 1: An example decision tree 
 
AN EXAMPLE DATA SET 
attr1 attr2 attr3 Class 
a1 b2 c3 1 
a2 b1 c2 2 
a3 b1 c1 3 
a2 b1 c3 2 
a1 b2 c2 1 
a3 b3 c1 3 
a1 b3 c2 2 
a1 b2 c1 1 
a3 b3 c2 1 
 
1. Create a root node for the tree that best classifies 
examples 
2. A ← best decision attribute for next node 
a. assign A as decision attribute for the node 
b. for each value of A, create new descendant of node 
c. sort training examples to leaf node 
d. if training examples are perfectly classified then stop 
else, iterate over new leaf nodes. 

Apart from hierarchical 
binary classifiers, two popular techniques for binary 
classification have also been used: One-Versus-All 
(OVA) 
and One-Versus-One (OVO). In addition, we utilize a 
method of using all binary classifiers to observe the 
performance of the hierarchical binary classifier. Since 
building all hierarchical binary classifiers is computation 
intensive, we propose a greedy technique for building 
hierarchical binary classifiers. Feature selection is an 
important step in the design of a classification system. 
Selecting a good subset of features decreases 
computational load and can also improve accuracy. 
Including random or noisy features can cause classifiers 
to learn incorrect associations. 
 
 

II. LITERATURE SURVEY 
 
Multiclass classification problem would be to map 
information samples into a little more than two classes. 
There's only two main approaches for solving multiclass 
classification problems. The first approach deals directly 
with the multiclass problem and uses algorithms like 
Decision Trees, Neural Networks [1], k-Nearest 
Neighbor  and Naive Bayesian classifiers. The main 
trouble with this method is to determine features which 
can distinguish classes when the wide range of classes 
increases. Consequently, this procedure is likely to yield 
lower accuracy. A classification algorithm for data 
streams must meet several different requirements from 
the traditional setting (Bifet et al., 2009). The most 
significant are the following. First, process one example 
at a time, and inspect it at most once. The data examples 
flow in and out of a system one after another. Each 
example must be accepted in the order in which it arrives. 
Once inspected or ignored, the example is discarded with 
no way to retrieve it. Second, use a limited amount of 
memory. Memory will be easily exhausted without 
limiting its allocation since the amount of the data is 
potentially infinite. Third, work in a limited amount of 
time. Though most conventional algorithms are fast 
enough when classifying examples, the training processes 
are time consuming. For an algorithm to scale 
comfortably to any number of examples, its training 
complexity must be linear to the number of examples, 
such that online learning is possible. Fourth, be ready to 
perform classification at any time. This is the so-called 
any-time property, which indicates that the induction 
model is ready to be applied at any point between 
training examples[1]. 

 
Decision tree induction algorithms on data streams 
Decision tree is one of the most often used techniques in 
the data mining literature. Each node of a decision tree 
contains a test on an attribute. Each branch from a node 
corresponds to a possible outcome of the test and each 
leaf contains a class prediction. A decision tree is 
constructed by recursively 
replacing leaves by test nodes, starting at the root. The 
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attribute to test in a leaf is chosen by comparing all 
available attributes and choosing the best one[2]. 
according to some heuristic evaluation function. Classic 
decision tree learners like ID3, C4.5, and CART assume 
that all training examples can be stored simultaneously in 
memory, and thus are severely limited in the number of 
examples from which they can learn. 
Predictive clustering 
 
In particular, the predictive modeling methods that 
partition the examples into subsets, e.g., decision trees 
and decision rules, can also be viewed as clustering 
methods.Namely, a decision tree can be regarded as a 
hierarchy of clusters, where each node is a cluster; such a 
tree is called a clustering tree. Likewise, a decision rule 
can represent a cluster of examples which it covers. The 
benefit of using these methods for clustering is that, in 
addition to the clusters themselves, we also get symbolic 
descriptions of the constructed clusters. Every cluster in a 
tree has a symbolic description in the form of a 
conjunction of conditions on the path from the root of the 
tree to the given node, and every cluster represented by a 
rule is described by the rule’s condition. There is, 
however, a difference between ‘tree’ clusters and 
‘rule’[4] clusters. ‘Tree’ clusters are ordered in a 
hierarchy and do not overlap, while ‘rule’ clusters in 
general are not ordered in any way (they are flat) and can 
overlap (one example can belong to more than one 
cluster). We can say that clustering trees are a 
hierarchical clustering method, and clustering rules are a 
partitional (and possibly fuzzy) clustering method. 
 
Brieman, Friedman, Olshen, and Stone developed the 
CART algorithm in 1984. It builds a binary tree. 
Observations are split at each node by a function on one 
attribute. The split is selected which divides the 
observations at a node into subgroups in which a single 
class most predominates. When no split can be found that 
increases the class specificity at a node the tree has 
reached a leaf node. When all observations are in leaf 
nodes the tree has stopped growing. Each leaf can then be 
assigned a class and an error rate (not every observation 
in a leaf node is of the same class). Because the later 
splits have smaller and less representative samples to 
work with they may overfit the data. Therefore, the tree 
may be cut back to a size which allows effective 
generalization to new data. Branches of the tree that do 
not enhance predictive classification accuracy are 
eliminated in a process known as "pruning." 
 
 

 
III. PROPOSED SYSTEM 

   

The major advantage of the Naïve Bayes classifier is that 
it requires short time for training the classifier. Also, each 
training example has an effect on the prediction and each 
training example in turn would increase/decrease the 
probability that a prediction is correct. However, the 

assumption of independence among attributes is not true 
always and hence the accuracy of Naïve Bayes classifier 
is unstable. 

 

 
 
 

DATASET FILE FORMATS 
In this project  two types of file formats are used. 
They are 

i) CSV 

ii) ARFF 

i. CSV:    It  stands for  Comma  Separated 
Value. This format  is obtained using  
MS-Excel. KDD99 dataset is loaded into 
Excel and then it is saved with  an 
extension of csv.  

ii. ARFF:  It stands for Attribute Relation 
File Format. An  file is an ASCII text file 
that describes a list of instances sharing a 
set of attributes. ARFF files were 
developed by the Machine Learning 
Project at the Department of Computer 
Science of The University of Waikato for 
use with the Weka machine learning 
software 

ARFF files have two distinct sections. The first 
section is the Header information, which is 
followed the Data in The ARFF Header Section 

The ARFF Header section of the file contains the 
relation declaration and attribute declarations.  

The @relation Declaration 

The relation name is defined as the first line in the 
ARFF file. The format is:  

Training data 

Selected 
Attributes 

Improved Kmeans 
approach 

Results 

Binary Decision 
Trees 
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@relation <relation-name> 

where <relation-name> is a string. The string must 
be quoted if the name includes spaces.  

The @attribute Declarations: 

Attribute declarations take the form of an orderd 
sequence of @attribute statements. Each attribute 
in the data set has its own @attribute statement 
which uniquely defines the name of that attribute 
and it 's data  type. The order the attributes are 
declared indicates the column position in the data 
section of the file. For example, if an attribute is 
the third one declared then Weka expects that all 
that attributes values will be found in the third 
comma delimited column.  

The format for the @attribute statement is:  
                 @attribute <attribute-name> 
<datatype> 
where the <attribute-name> must start with an 
alphabetic character. If spaces are to be included in 
the name then the entire name must be quoted.  

The <datatype> can be any of the four types 
currently (version 3.2.1) supported by Weka:  

 numeric  

 <nominal-specification>  

 string  

 date [<date-format>]  

where <nominal-specification> and <date-format> 
are defined below. The keywords numeric, string 
and date are case insensitive.  

Nominal attributes 

Nominal values are defined by providing an 
<nominal-specification> listing the possible 
values: {<nominal-name1>, <nominal-name2>, 
<nominal-name3>, ...}  

String attributes 

          String attributes allow us to create attributes 
containing arbitrary textual values. String 
attributes are declared as follows:  

              @ATTRIBUTE   name    string 
 
Decision tree is a tree structure, where internal nodes 
denote a test on an attribute, each branch represents the 
outcomes of the test and the leaf node represents the class 
labels. Decision tree induction is the learning of decision 
trees from class-labeled training tuples. Construction of 
decision trees is simple and fast, and does not need any 

domain knowledge and hence appropriate for exploratory 
knowledge discovery. In general, decision tree classifiers 
have good accuracy, but successful use of it depends on 
the data at hand. Decision trees are used for classification 
and classification rules are easily generated from them. 
An unknown tuple X can be classified, given its attribute 
values by testing the attribute values against the decision 
tree. The general decision tree algorithm takes the 
training data set, attribute list and attribute selection 
method as input. The algorithm creates a node, and then 
applies attribute selection method to determine the best 
splitting criteria and the created node is named by that 
attribute. Subset of training tuples is formed using the 
splitting attribute. The algorithm is called recursively for 
each subset, till the subset contains tuples of same class. 
When the subset contains tuples from the same class a 
leaf is attached with a label of the majority class in the 
training set from the root. ID3, C4.5, and CART adopt a 
greedy, non-backtracking approach in which decision 
trees are constructed in a top-down recursive divide-and-
conquer. 
 
Feature Selection 
 
A preprocessing technique feature selection identifies and 
removes irrelevant attributes that do not play any role in 
the classification task. Several feature selection methods 
are available with different search techniques to produce 
a reduced data set. This reduced data set improves 
accuracy compared with original dataset. Feature 
selection does not alter the relevance or meaning the data 
set. The feature selection methods are categorized as 
filter, wrapper and hybrid. The result of these methods 
varies in time and accuracy. 
 

ROBUST BAGGING ALGORITHM: 
 
A bagging algorithm for multiple classification into 
several classes. 
1 Initialisation of the training set D 
2 for  m = 1, ..., M 
2.1 Creation of a new set Dm of the same size D by 
random selection of training examples from the set D 
(some of examples can be selected repeatedly and some 
may mot be selected at all). 
2.2 Learning of a particular classifier Hm: Dm → R by a 
given machine learning algorithm based on the actual 
training set Dm. 
3. Compound classifier H is created as the aggregation of 
particular classifiers Hm: m = 1, ...,M and an example di 
is classified to the class cj in accordance with the number 
of votes obtained from particular classifiers Hm. 

 
If it is possible to influence the learning procedure 
performed by the classifier Hm directly, classification 
error can be minimised also by Hm while keeping 
parameters αm constant. 
step 4: For each continuous attributes in D find the each 
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adjacent pair of continuous attribute  
values that are not classified into the same class value for 
that continuous attribute  
Step 5: Calculate the prior probabilities P(Cj) and 
conditional probabilities P(Aij|Cj) in D.  
Step 6: Classify all the training examples using these 
prior and conditional probabilities, P(ei 
 |  

Cj) = P(Cj) ∏k=1→p P(Aij | Cj). 
Step 7: Update the class value for each example in D 
with Maximum Likelihood (ML) of  posterior 
probability,  

P(Cj|ei); Cj = Ci→ PML(Cj|ei). 
Step 8: Recalculate the prior P(Cj) and conditional 
P(Aij|Cj) probabilities using updated class  values in D. 
 

Cluster analysis 
Clustering finds groups of similar data either by 
partitioning data into k subsets (partitioning methods) or 
creating a hierarchical decomposition of the data 
(hierarchical methods) or building groups of data based 
on density, Hierarchical clustering creates a hierarchy of 
data records and subsets either by dividing the whole data 
set until a given size of subsets (divisive approach) or 
agglomerating records into subsets until all records 
belong to a given number of sets or one set 
(agglomerative approach). Division and merging is based 
on the distance between groups called linkage that can be 
calculated as the distance between closest or center points 
of groups as well as distance among all points of different 
groups 
 

IMPROVED KMEANS: 
    

The pseudo code for the adapted kMean 

algorithm is presented as below: 

1. Choose random k data points as initial Clusters Mean 

(cluster center) 

2. Repeat 

3. for each data point x from D 

4. Computer the distance x and each cluster mean 

(centroid) 

5. Assign x to the nearest cluster. 

6. End for 

7. Re-compute the mean for current cluster collections. 

8. Until reaching stable cluster 

9. Use these centroid for normal and outlier. 

10. Calculate distance of centroid from normal and 

outlier centroid points. 

11. If distance(X, Dj) > = thres 

12. Then outlier found ; exit 

13. Else then 

14. X is normal; 

 
 

 

 

IV.EXPERIMENTAL RESULTS 
 

All experiments were performed with the configurations 
Intel(R) Core(TM)2 CPU 2.13GHz, 2 GB RAM, and the 
operating system platform is Microsoft Windows XP 
Professional (SP2). 
 
 

 
 
Selected attributes: 1,2,3,4,6,7,8,9 : 8 
                     RI 
                     Na 
                     Mg 
                     Al 
                     K 
                     Ca 
                     Ba 
                     Fe 
 
 
 
All the best NBDTrees:  
 
IMPROVED BINARY DECISION TREE USING 
NAIVE BAYES AND CLUSTERING TREE 
------------------ 
 
Ba <= 0.27 
|   Mg <= 2.41 
|   |   K <= 0.11 
|   |   |   RI <= 1.52068: tableware (11.0) 
|   |   |   RI > 1.52068: build wind non-float (4.0) 
|   |   K > 0.11 
|   |   |   Na <= 13.49: containers (14.0/1.0) 
|   |   |   Na > 13.49: build wind non-float (5.0/1.0) 
|   Mg > 2.41 
|   |   Al <= 1.41 
|   |   |   RI <= 1.51689 
|   |   |   |   Fe <= 0.17: vehic wind float (7.0/1.0) 
|   |   |   |   Fe > 0.17: build wind float (2.0) 
|   |   |   RI > 1.51689 
|   |   |   |   K <= 0.23 
|   |   |   |   |   Mg <= 3.56: build wind non-float (2.0/1.0) 
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|   |   |   |   |   Mg > 3.56 
|   |   |   |   |   |   RI <= 1.52127 
|   |   |   |   |   |   |   RI <= 1.52101: build wind float (5.0/1.0) 
|   |   |   |   |   |   |   RI > 1.52101: vehic wind float (3.0) 
|   |   |   |   |   |   RI > 1.52127: build wind float (16.0/1.0) 
|   |   |   |   K > 0.23 
|   |   |   |   |   RI <= 1.518: build wind float (34.0/2.0) 
|   |   |   |   |   RI > 1.518 
|   |   |   |   |   |   Mg <= 3.6 
|   |   |   |   |   |   |   RI <= 1.52119: build wind float 
(11.0/1.0) 
|   |   |   |   |   |   |   RI > 1.52119: headlamps (2.0) 
|   |   |   |   |   |   Mg > 3.6: build wind non-float (16.0) 
|   |   Al > 1.41 
|   |   |   Ca <= 8.89 
|   |   |   |   Fe <= 0.16: build wind non-float (39.0/1.0) 
|   |   |   |   Fe > 0.16 
|   |   |   |   |   Ba <= 0.0 
|   |   |   |   |   |   Na <= 12.87: build wind float (4.0) 
|   |   |   |   |   |   Na > 12.87: build wind non-float (3.0/1.0) 
|   |   |   |   |   Ba > 0.0: build wind non-float (4.0) 
|   |   |   Ca > 8.89: vehic wind float (4.0/1.0) 
Ba > 0.27: headlamps (28.0/2.0) 
 
Number of Leaves  :  20 
 
Size of the tree :  39 
 
 Correctly Classified Instances         207               96.729  
% 
Incorrectly Classified Instances         7                3.271  % 
Mean absolute error                      0.0471 
Relative absolute error                 22.2462 % 
Total Number of Instances              214     
 
 
IRIS DATASET: 
 
Selected attributes: 3,4 : 2 
                     petallength 
                     petalwidth 
 
 
 
All the best NBDTrees:  
 
IMPROVED BINARY DECISION TREE USING 
NAIVE BAYES AND CLUSTERING TREE 
------------------ 
 
petalwidth <= 0.6: Iris-setosa (54.0) 
petalwidth > 0.6 
|   petalwidth <= 1.7 
|   |   petallength <= 4.9: Iris-versicolor (48.0/1.0) 
|   |   petallength > 4.9 
|   |   |   petalwidth <= 1.5: Iris-virginica (4.0) 
|   |   |   petalwidth > 1.5: Iris-versicolor (3.0/1.0) 
|   petalwidth > 1.7: Iris-virginica (41.0) 
 
Number of Leaves  :  5 

 
Size of the tree :  9 
 Correctly Classified Instances         147               98      % 
Incorrectly Classified Instances         3                2      % 
Mean absolute error                      0.0272 
Relative absolute error                  6.1228 % 
Total Number of Instances              150    
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Above two graphs shows that accuracy,error 
and time of execution to different datasets. 

 
V. CONCLUSION AND FUTURE SCOPE 

 
In this paper, we analyzed on the construction of  binary 
decision tree model using naïve bayes and bagging 
approach, and clustering method. We propose a new 
condition of generating terminal nodes so that the 
decision tree is optimized in the number of nodes and 
leaves. In addition, the speed is also improved. But when 
dataset has small number of attributes, the precision will 
be influenced.Experimental results give better results 
appro > 96 % with different datasets are tested. The 
pruning method of this algorithm will be also studied in 
future work. 
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