
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 9– Sep 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3260

An Optimization Technique for CRC Generation

#
 Author

K.V.Krishna Reddy

Dept. of ECE, Sreenidhi institute of Science and Technology (SNIST) Hyderabad AP, India.

Abstract: In networking environments, the cyclic

redundancy check (CRC) is widely utilized to determine

whether errors have been introduced during transmissions

over physical links. In this paper, we present a fast cyclic

redundancy check (CRC) algorithm that performs CRC

computation for an arbitrary length of message in parallel.

This paper proposes 64 bits parallel CRC architecture based

on F matrix with order of generator polynomial is 32 and

showed CRC-64 is having less latency and high throughput

compared to CRC-32 parallel architecture through Xilinx

Simulator.

Index Terms—Keywords: CRC, lookup table, Fast update

I.INTRODUCTION

Cyclic Redundancy Checking is one of the most frequently

used techniques for detecting transmission errors. One of the

CRC techniques utilized in networking is the CRC-32

algorithm employed by Ethernet. The Cyclic Redundancy

Check (CRC) is an error detection technique that is widely

utilized in digital data communication and other fields such as

data storage, data compression, and etc. There are many CRC

algorithms, each of which has a predetermined generator

polynomial G(x) that is utilized to generate the CRC code. F

or example, in TCP/IP protocol suite, the most frequently

utilized CRC algorithm is the CRC-32 algorithm employed by

Ethernet, which has the following generator polynomial:

G(x) = x
32

 + x
26

 + x
23

 + x
22

 + x
16

 + x
12

 + x
11

 + x
10

 + x
8
 + x

7
 +

x
5
 + x

4
 + x

2
 + x

1
 + x

0

where m = 32 is the highest order or called the degree of the

generator polynomial and also the length of the CRC code.

We can extract the coefficient of G(x) and represent it in

binary form as: P = p32; p31;::: ; p1; p0g =

[100000100110000010001110110110111]; which has m + 1

= 33 bits. The most significant bit of P, P32, corresponds to the

coefficient of x
32

, the highest order of G(x).

 Similarly, p31 corresponds to the coefficient of x
31

, which is 0

in this case, and the other bits follow the coefficients at their

corresponding positions. P is called the generator, and

uniquely coincides with the generator polynomial.CRC

calculation can be performed in hardware and software. The

general hardware solution for CRC calculation is linear

feedback shift register (LFSR), in which simple serial bit

architecture is used for encoding and decoding the message.

When CRC technique is applied, a CRC code is appended

to the end of the data message during transmission. Assume

that the data message is represented by D, which may have

hundreds of bits and the CRC code is denoted by C with the

length m, the degree of the generator polynomial.

Accordingly, the transmitted data unit with CRC code can be

denoted by T = fDCg = D 2
m
 + C.

The CRC code C is generated so that T is an exact multiple of

generator P. Therefore, if T is transmitted and there is no error

during transmission, the received message T must also be an

exact multiple of the same P. Otherwise, a transmission error

must have occurred.

A Serial Implementation of CRC

In hardware implementations, the CRC calculation (modulo 2

divisions) can be easily performed by logical combinations of

shift registers and XOR gates. The Linear Feedback Shift

Register (LFSR) is a common approach designed to

accomplish the serial calculation of CRC in hardware.

Figure 1 illustrates the basic architecture of LFSR for serial

calculation of CRC. The inputs- outputs in the figure are shift

registers which store the remainder after every subtraction.

The number of shift registers equals m, the degree of the

generator polynomial

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 9– Sep 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3261

 Figure 1. Basic LFSR Architecture

As shown in fig.1 is serial data input, X is present state

(generated CRC), X’ is next state and p is generator

polynomial. Working of basic LFSR architecture is expressed

in terms of following equations.

Frame Check sequence (FCS) will be generated after (k+m)

cycle, where k indicates number of data bit and m indicates

the order of generator polynomial. For 32 bits serial CRC if

order of generator polynomial is 32 then serial CRC will be

generated after 64 cycles.

B. Parallel CRC

There are different techniques for parallel CRC

generation given as follow.

1. A Table-Based Algorithm for Pipelined CRC

Calculation.

2. Fast CRC Update

3. F matrix based parallel CRC generation.

4. Unfolding, Retiming and pipelining Algorithm

The pipelined architecture in Fig.2 has five blocks as input;

four of them are used to read four new blocks from the

message in each iteration.

 Fig. 2 Pipelined CRC architecture

They are converted into CRC using lookup tables: LUT3,

LUT2, and LUT1.LUT3 contain CRC values for the input

followed by 12 bytes of zeros, LUT2 8 bytes, and LUT1 4

bytes. Note that the rightmost block does not need any lookup

table. It is because this architecture assumes CRC-32, the

most popular CRC, and 4-byte blocks. If the length of a binary

string is smaller than the degree of the CRC generator, its

CRC value is the string itself. Since the rightmost block

corresponds to A4, it does not have any following zero and

thus its CRC is the block itself. The results are combined

using XOR, and then it is combined with the output of LUT4,

the CRC of the value from the previous iteration with 16 bytes

of zeros concatenated. In order to shorten the critical path, we

introduce another stage called the pre-XOR stage right before

the four-input XOR gate.

In fast CRC update technique we don’t required to calculate

CRC each time for all the data bits, instead of that calculating

CRC for only those bits that are change.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 9– Sep 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3262

Figure .3 Fast CRC update architecture

Algorithm and Parallel architecture for CRC generation based

on F matrix. Parallel data input and each element of F matrix,

which is generated from given generator polynomial is anded,

result of that will xoring with present state of CRC checksum.

The final result generated after (k+ m) /w cycle.

C. Parallel architecture

When data are stored on or communicated through media that

may introduce errors, some form of error detection or error

detection and correction coding is usually employed.

Mathematically, a CRC is computed for a fixed-length

message by treating the message as a string of binary

coefficients of a polynomial, which is divided by a generator

polynomial, with the remainder of this division used as the

CRC.

Fig.4.demonstrates an example of parallel CRC calculation

with multiple input bits w = m = 4. The dividend is divided

into three 4-bit fields, acting as the parallel input vectors D (0),

D (1), D (2), respectively.

For our parallel CRC design, the serial computation

demonstrated above should be rearranged into a parallel

configuration.

Figure .4 Parallel calculation of CRC-32 for 32bit

II. RELATED WORK

It is a simple circuit based on shift registers performs the CRC

calculation by handling the message one bit at a time [1]. A

typical serial CRC circuit using LFSRs is shown in Fig. 1. Fig.

1 illustrates one possible structure for CRC32.There are a total

of 32 registers; the middle ones are left out for brevity. The

combinational logic operation in the figure is the XOR

operation. One data bit is shifted in at each clock pulse. This

circuit operates in a fashion similar to manual long division.

The XOR gates in Fig. 1 hold the coefficients of the divisor

corresponding to the indicated powers of x. Although the shift

register approach to computing CRCs is usually implemented

in hardware, this algorithm can also be used in software when

bit-by-bit processing is adequate.

Today’s applications need faster processing speed and there

has been much work on parallelizing CRC calculation. Cheng

and Parhi discussed unfolding the serial implementation and

combined it with pipelining and retiming algorithms to

increase the speed [2]. The parallel long Bose-Chaudhuri-

Hocquenghen (BCH) encoders are based on the multiplication

and division operations on the

generator polynomial and they are efficient to speed up the

parallel linear feedback shift register (LFSR) calculation [3],

[4]. Unfortunately, the implementation cost is rather high

because of the complexity of multiplication and division

operations. Another approach to unroll the serial

implementation was proposed by Campobello et al. [5] using

linear systems theory. This algorithm is, however, based on

the assumption that the packet size is a multiple of the CRC

input size. Satran and Sheinwald proposed an incremental

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 9– Sep 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3263

algorithm in which CRC is computed on out-of-order

fragments of a message [6].

In their algorithm, a CRC is computed incrementally and each

arriving segment contributes its share to the message’s CRC

upon arrival, independently of other segments’ arrivals, and

can thus proceed immediately to the upper layer protocol.

A number of software-based algorithms have also been

proposed [7]–[9], as well as FPGA-based approaches [10]–

[11]. Simionescu proposed a scheme to calculate CRC in

parallel [14] and the idea has been widely used. Walma

designed a hardware-based approach [12], where he compared

the area and throughput of pipelined and non-pipelined CRC

designs and proposed a pipelined CRC calculation to increase

the throughput.

III. PROPOSED SYSTEM:

To solve the problem of the parallel calculation of CRC, we

first try to simulate the behaviour of a serial feedback shift

register in Fig. 1 with a parallel finite state machine shown in

Fig. 5

At every clock pulse, the parallel machine receives n input

bits at a time and must return the updated CRC value. The

length of the data may not be known in advance. In Fig.5 X

represents the next n input bits of the message, and Y is the

current CRC value, which is calculated with the data bits

preceding X.

 Fig.5. Parallel CRC structure

The combinational logic must produce the CRC value for the

all data bits up to X, inclusively, from the new input bits X

and the current CRC value Y. In other words, the output of the

combinational logic is a function of X and Y only. If Y is the

current content of the serial feedback shift register in Fig. 1

and X is the next n input bits, the output of the combinational

logic must be the same as the content of the shift register after

n clocks.

In proposed architecture w= 64 bits are parallely processed

and order of generator polynomial is m= 32 as shown in fig. 3.

As discussed previously, if 32 bits are processed parallely then

CRC-32 will be generated after (k+m)/w cycles. If we

increase number of bits to be processed parallely, number of

cycles required to calculate CRC can be reduced. Proposed

architecture can be realized by below equation.

Where,

D (0 to 31) =first 32 bits of parallel data input D (0 to 63) =

next 32 bits of parallel data input

X’=next state

 X=present state

Figure 6. Block diagram of 64-bit parallel calculation of CRC-

32.

In proposed architecture di is the parallel input and F (i) (j) is

the element of F32matrix located at ith row and jth column.

As shown in figure 3 input data bits d0….d31anded with each

row of FW matrix and result will be xored individually with

d32, d33…….d63. Then each xored result is then xored with

the X’ (i) term of CRC32. Finally X will be the CRC

generated after (k+m)/w cycle, where w=64.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 9– Sep 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3264

IV.RESULT AND ANALYSIS

The proposed architecture is synthesized in Xilinx-9.2i and

simulated in Xilinx ISE Simulator, which required half cycle

then the previous 32bit design[1][5]. In our programming in

Verilog by specifying only generator polynomial, it directly

gives F matrix useful for parallel CRC generation that is not

available in previous methods

 CRC-64

CRC-64

The proposed CRC-32 architecture with 64bit parallel bit

simulated in Xilinx 9.2i ISE simulator. Input data bit to

system is FFFFFFFFFFFFFFFF (64 bit). The final result

obtain after (k+ m)/w cycle for 32-bit residual will be

7A2EEE96 (hexadecimal form).

For fast CRC Calculation, Latency and Throughput plays a

vital role to show the performance of system.

Latency: Latency is measure of time delay experienced in

system. This Latency should be calculated and evaluated by

Where,

N = number of blocks/bytes.

M = number of divisions of the input data. Or

C comp = number of cycles to calculate the CRC.

C comb = number of cycles to calculate the XOR of all

remainders.

F system = System clock frequency.

Throughput: Throughput is the average rate of successful

message delivery over communication channel. Throughput is

calculated using following equation

Latency and Throughput are calculated for CRC using CRC-

32 and CRC-64 provides less latency and more throughput.

CRC-32

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 9– Sep 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3265

CRC-32

CRC-64

CRC-32

V.CONCLUSION

In this proposed paper 32bit parallel architecture required

more clock cycles for 64 byte data. Proposed design (64bit)

required only few cycles to generate CRC with same order of

generator polynomial. So, it drastically reduces computation

time to 30% and same time increases the throughput. Pre-

calculation of F matrix is not required in proposed architecture.

Hence, this is compact and easy method for fast CRC

generation. CRC-64 provides less latency and more

throughput.

VI. REFERENCES

[1] T. V. Ramabadran and S. S. Gaitonde, ―A tutorial on CRC

computations,‖ IEEE Micro, vol. 8, no. 4, pp. 62–75, Aug. 1988.
[2] C. Cheng and K. K. Parhi, ―High-speed parallel CRC implementation

based on unfolding, pipelining, and retiming,‖ IEEE Transactions on Circuits

and Systems II: Express Briefs, vol. 53, no. 10, pp. 1017–1021, Oct. 2006.

[3] X. Zhang and K. K. Parhi, ―High-speed architectures for parallel long

BCH encoders,‖ IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 13, no. 7, pp. 872–877, Jul. 2005.
[4] K. K. Parhi, ―Eliminating the fanout bottleneck in parallel long BCH

encoders,‖ IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

51, no. 3, pp. 512–516, Jul. 2004.
[5] G. Campobello, G. Patane, and M. Russo, ―Parallel CRC realization,‖

IEEE Transactions on Computers, vol. 52, no. 10, pp. 1312–1319, Oct. 2003.

[6] J. Satran, D. Sheinwald, and I. Shimony, ―Out of order incremental
CRC computation,‖ IEEE Transactions on Computers, vol. 54, no. 9, pp.

1178–1181, Sep. 2005.

[7] D. Feldmeier, ―Fast software implementation of error detection codes,‖
IEEE/ACM Transactions on Networking, vol. 3, no. 6, pp. 640–651, Dec.

1995.

 [8] A. Simionescu, ―CRC tool computing CRC in parallel for Ethernet,‖
http://space.ednchina.com/upload/2008/8/27/ 300b83c-43ea-459b-ad5c-

4dc377310024.pdf, 2001.

[9] M. E. Kounavis and F. L. Berry, ―Novel table lookup-based algorithms

for high-performance CRC generation,‖ IEEE Transactions on Computers,

vol. 57, no. 11, pp. 1550–1560, Nov. 2008.

[10] M. Braun, J. Friedrich, T. Grn, and J. Lembert, ―Parallel CRC

computation in FPGAs generation,‖ Field-Programmable Logic Smart
Applications, New Paradigms and Compilers, vol. 1142, pp. 156–165, 1996.

 [11] R. Ahmad, O. Sidek, and S. Mohd, ―Development of the CRC block

for Zigbee standard on FPGA,‖ in Proceedings of Interna-tional Conference
for Technical Postgraduates, Dec. 2009.

[12] M. Walma, ―Pipelined cyclic redundancy check (CRC) calculation,‖

in Proceedings of the 16th International Conference on Computer
Communications and Networks, Aug. 2007, pp. 365–370.

BIO DATA

K.Venkata Krishna Reddy presently pursuing M.Tech in Department of

electronics and communications in Sreenidhi institute of science and
technology (SNIST) Hyderabad AP, India

