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Abstract: In networking environments, the cyclic 

redundancy check (CRC) is widely utilized to determine 

whether errors have been introduced during transmissions 

over physical links. In this paper, we present a fast cyclic 

redundancy check (CRC) algorithm that performs CRC 

computation for an arbitrary length of message in parallel. 

This paper proposes 64 bits parallel CRC architecture based 

on F matrix with order of generator polynomial is 32 and 

showed CRC-64 is having less latency and high throughput 

compared to CRC-32 parallel architecture through Xilinx 

Simulator. 
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I.INTRODUCTION 

 

Cyclic Redundancy Checking is one of the most frequently 

used techniques for detecting transmission errors. One of the 

CRC techniques utilized in networking is the CRC-32 

algorithm employed by Ethernet. The Cyclic Redundancy 

Check (CRC) is an error detection technique that is widely 

utilized in digital data communication and other fields such as 

data storage, data compression, and etc. There are many CRC 

algorithms, each of which has a predetermined generator 

polynomial G(x) that is utilized to generate the CRC code. F 

or example, in TCP/IP protocol suite, the most frequently 

utilized CRC algorithm is the CRC-32 algorithm employed by 

Ethernet, which has the following generator polynomial: 
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where m = 32 is the highest order or called the degree of the 

generator polynomial and also the length of the CRC code. 

We can extract the coefficient of G(x) and represent it in 

binary form as: P = p32; p31;::: ; p1; p0g = 

[100000100110000010001110110110111]; which has m + 1 

= 33 bits. The most significant bit of P, P32, corresponds to the 

coefficient of x
32

, the highest order of G(x). 

 

 Similarly, p31 corresponds to the coefficient of x
31

, which is 0 

in this case, and the other bits follow the coefficients at their 

corresponding positions. P is called the generator, and 

uniquely coincides with the generator polynomial.CRC 

calculation can be performed in hardware and software.  The 

general hardware solution for CRC calculation is linear 

feedback shift register (LFSR), in which simple serial bit 

architecture is used for encoding and decoding the message. 

When CRC technique is applied, a CRC code is appended 

to the end of the data message during transmission. Assume 

that the data message is represented by D, which may have 

hundreds of bits and the CRC code is denoted by C with the 

length m, the degree of the generator polynomial. 

Accordingly, the transmitted data unit with CRC code can be 

denoted by T = fDCg = D 2
m
 + C.  

 

The CRC code C is generated so that T is an exact multiple of 

generator P. Therefore, if T is transmitted and there is no error 

during transmission, the received message T must also be an 

exact multiple of the same P. Otherwise, a transmission error 

must have occurred. 

 

 

 

A Serial Implementation of CRC 

 

In hardware implementations, the CRC calculation (modulo 2 

divisions) can be easily performed by logical combinations of 

shift registers and XOR gates. The Linear Feedback Shift 

Register (LFSR) is a common approach designed to 

accomplish the serial calculation of CRC in hardware. 

 

Figure 1 illustrates the basic architecture of LFSR for serial 

calculation of CRC. The inputs- outputs in the figure are shift 

registers which store the remainder after every subtraction. 

The number of shift registers equals m, the degree of the 

generator polynomial 
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        Figure 1. Basic LFSR Architecture 

 

As shown in fig.1 is serial data input, X is present state 

(generated CRC), X’ is next state and p is generator 

polynomial. Working of basic LFSR architecture is expressed 

in terms of following equations. 

 

 
Frame Check sequence (FCS) will be generated after (k+m) 

cycle, where k indicates number of data bit and m indicates 

the order of generator polynomial. For 32 bits serial CRC if 

order of generator polynomial is 32 then serial CRC will be 

generated after 64 cycles. 

 

B. Parallel CRC  

There are different techniques for parallel CRC  

generation given as follow.  

1.  A Table-Based Algorithm for Pipelined CRC  

Calculation.  

2.  Fast CRC Update 

3.  F matrix based parallel CRC generation. 

4.  Unfolding, Retiming and pipelining Algorithm 

 

 

The pipelined architecture in Fig.2 has five blocks as input; 

four of them are used to read four new blocks from the 

message in each iteration.  

 
 

          Fig. 2 Pipelined CRC architecture 

 

They are converted into CRC using lookup tables: LUT3, 

LUT2, and LUT1.LUT3 contain CRC values for the input 

followed by 12 bytes of zeros, LUT2 8 bytes, and LUT1 4 

bytes. Note that the rightmost block does not need any lookup 

table. It is because this architecture assumes CRC-32, the 

most popular CRC, and 4-byte blocks. If the length of a binary 

string is smaller than the degree of the CRC generator, its 

CRC value is the string itself. Since the rightmost block 

corresponds to A4, it does not have any following zero and 

thus its CRC is the block itself. The results are combined 

using XOR, and then it is combined with the output of LUT4, 

the CRC of the value from the previous iteration with 16 bytes 

of zeros concatenated. In order to shorten the critical path, we 

introduce another stage called the pre-XOR stage right before 

the four-input XOR gate. 

 

In fast CRC update technique we don’t required to calculate 

CRC each time for all the data bits, instead of that calculating 

CRC for only those bits that are change. 
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Figure .3 Fast CRC update architecture 

 

Algorithm and Parallel architecture for CRC generation based 

on F matrix. Parallel data input and each element of F matrix, 

which is generated from given generator polynomial is anded, 

result of that will xoring with present state of CRC checksum. 

The final result generated after (k+ m) /w cycle. 

 

C. Parallel architecture 

 

When data are stored on or communicated through media that 

may introduce errors, some form of error detection or error 

detection and correction coding is usually employed. 

Mathematically, a CRC is computed for a fixed-length 

message by treating the message as a string of binary 

coefficients of a polynomial, which is divided by a generator 

polynomial, with the remainder of this division used as the 

CRC. 

Fig.4.demonstrates an example of parallel CRC calculation 

with multiple input bits w = m = 4. The dividend is divided 

into three 4-bit fields, acting as the parallel input vectors D (0), 

D (1), D (2), respectively. 

For our parallel CRC design, the serial computation 

demonstrated above should be rearranged into a parallel 

configuration. 

 
 

Figure .4 Parallel calculation of CRC-32 for 32bit 

 

II. RELATED WORK 

 

It is a simple circuit based on shift registers performs the CRC 

calculation by handling the message one bit at a time [1]. A 

typical serial CRC circuit using LFSRs is shown in Fig. 1. Fig. 

1 illustrates one possible structure for CRC32.There are a total 

of 32 registers; the middle ones are left out for brevity. The 

combinational logic operation in the figure is the XOR 

operation. One data bit is shifted in at each clock pulse. This 

circuit operates in a fashion similar to manual long division. 

The XOR gates in Fig. 1 hold the coefficients of the divisor 

corresponding to the indicated powers of x. Although the shift 

register approach to computing CRCs is usually implemented 

in hardware, this algorithm can also be used in software when 

bit-by-bit processing is adequate. 

Today’s applications need faster processing speed and there 

has been much work on parallelizing CRC calculation. Cheng 

and Parhi discussed unfolding the serial implementation and 

combined it with pipelining and retiming algorithms to 

increase the speed [2]. The parallel long Bose-Chaudhuri-

Hocquenghen (BCH) encoders are based on the multiplication 

and division operations on the 

generator polynomial and they are efficient to speed up the 

parallel linear feedback shift register (LFSR) calculation [3], 

[4]. Unfortunately, the implementation cost is rather high 

because of the complexity of multiplication and division 

operations. Another approach to unroll the serial 

implementation was proposed by Campobello et al. [5] using 

linear systems theory. This algorithm is, however, based on 

the assumption that the packet size is a multiple of the CRC 

input size. Satran and Sheinwald proposed an incremental 
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algorithm in which CRC is computed on out-of-order 

fragments of a message [6]. 

In their algorithm, a CRC is computed incrementally and each 

arriving segment contributes its share to the message’s CRC 

upon arrival, independently of other segments’ arrivals, and 

can thus proceed immediately to the upper layer protocol.  

A number of software-based algorithms have also been 

proposed [7]–[9], as well as FPGA-based approaches [10]–

[11]. Simionescu proposed a scheme to calculate CRC in 

parallel [14] and the idea has been widely used. Walma 

designed a hardware-based approach [12], where he compared 

the area and throughput of pipelined and non-pipelined CRC 

designs and proposed a pipelined CRC calculation to increase 

the throughput. 

 

III. PROPOSED SYSTEM: 

 

To solve the problem of the parallel calculation of CRC, we 

first try to simulate the behaviour of a serial feedback shift 

register in Fig. 1 with a parallel finite state machine shown in 

Fig. 5  

At every clock pulse, the parallel machine receives n input 

bits at a time and must return the updated CRC value. The 

length of the data may not be known in advance. In Fig.5 X 

represents the next n input bits of the message, and Y is the 

current CRC value, which is calculated with the data bits 

preceding X. 

 

 
                

                   Fig.5. Parallel CRC structure 

 

The combinational logic must produce the CRC value for the 

all data bits up to X, inclusively, from the new input bits X 

and the current CRC value Y. In other words, the output of the 

combinational logic is a function of X and Y only. If Y is the 

current content of the serial feedback shift register in Fig. 1 

and X is the next n input bits, the output of the combinational 

logic must be the same as the content of the shift register after 

n clocks. 

In proposed architecture w= 64 bits are parallely processed 

and order of generator polynomial is m= 32 as shown in fig. 3. 

As discussed previously, if 32 bits are processed parallely then 

CRC-32 will be generated after (k+m)/w cycles. If we 

increase number of bits to be processed parallely, number of 

cycles required to calculate CRC can be reduced. Proposed 

architecture can be realized by below equation. 

 

 
 

 

Where,  

D (0 to 31) =first 32 bits of parallel data input D (0 to 63) = 

next 32 bits of parallel data input  

X’=next state  

   X=present state 

 
 

Figure 6. Block diagram of 64-bit parallel calculation of CRC-

32. 

 

In proposed architecture di is the parallel input and F (i) (j) is 

the element of F32matrix located at ith row and jth column. 

As shown in figure 3 input data bits d0….d31anded with each 

row of FW matrix and result will be xored individually with 

d32, d33…….d63. Then each xored result is then xored with 

the X’ (i) term of CRC32. Finally X will be the CRC 

generated after (k+m)/w cycle, where w=64. 
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IV.RESULT AND ANALYSIS 

 

The proposed architecture is synthesized in Xilinx-9.2i and 

simulated in Xilinx ISE Simulator, which required half cycle 

then the previous 32bit design[1][5]. In our programming in 

Verilog by specifying only generator polynomial, it directly 

gives F matrix useful for parallel CRC generation that is not 

available in previous methods 

 

 

 
 

   CRC-64 

 

 
 

CRC-64 

 

The proposed CRC-32 architecture with 64bit parallel bit 

simulated in Xilinx 9.2i ISE simulator. Input data bit to 

system is FFFFFFFFFFFFFFFF (64 bit). The final result 

obtain after (k+ m)/w cycle for 32-bit residual will be 

7A2EEE96 (hexadecimal form). 

For fast CRC Calculation, Latency and Throughput plays a 

vital role to show the performance of system.  

Latency:  Latency is measure of time delay experienced in 

system. This Latency should be calculated and evaluated by 

 

 
Where, 

N = number of blocks/bytes. 

M = number of divisions of the input data. Or  

C comp = number of cycles to calculate the CRC. 

C comb = number of cycles to calculate the XOR of all 

remainders. 

F system = System clock frequency. 

 

Throughput:  Throughput is the average rate of successful 

message delivery over communication channel. Throughput is 

calculated using following equation 

 
 

Latency and Throughput are calculated for CRC using CRC-

32 and CRC-64 provides less latency and more throughput. 

 

 
 

CRC-32 
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CRC-32 

 

 

 
 

CRC-64 

 

CRC-32 

 

V.CONCLUSION 

 

In this proposed paper 32bit parallel architecture required 

more clock cycles for 64 byte data. Proposed design (64bit) 

required only few cycles to generate CRC with same order of 

generator polynomial. So, it drastically reduces computation 

time to 30% and same time increases the throughput. Pre-

calculation of F matrix is not required in proposed architecture. 

Hence, this is compact and easy method for fast CRC 

generation. CRC-64 provides less latency and more 

throughput. 
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