
International Journal of Computer Trends and Technology (IJCTT) – volume4Issue8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2800

Query Optimization Approach in SQL to prepare
Data Sets for Data Mining Analysis

Rajesh Reddy Muley 1, Sravani Achanta2, Prof.S.V.Achutha Rao3

1pursuing M.Tech(CSE), Vikas College of Engineering and Technology, Nunna, Vijayawada. Affiliated to JNTU-Kakinada, A.P,
India

Sravani Achanta is working with Vikas College of Engineering and Technology, Nunna, Vijayawada, India.

3 S.V. Achuta Rao is working as a Professor & Head,Department of CSE at Vikas College of Engineering and Technology,

Nunna, Vijayawada, India.

Abstract—Collecting the information from various databases and
presenting it to the user is a tough job and presenting the data as
per the user requirement is even more tough because the user
may need the data to be shown in many different ways. Moreover
the data that has to be shown to the may not be present in one
single database but may be present in more than one database
tables. In normal way if the user is trying to access the details
with very few requirements which are in a single table then there
is no problem but if the data to be shown to user is present in
many tables then the issue is to merge that data by using many
queries for retrieval and then arrange as in the way expected by
user. To overcome this drawback of presenting the data in much
easier way and also reduce the overload on database we have
data mining methods to solve the problem. This paper explains
us the way to use the data mining methods to show the datasets
by mining the data from different tables at the same time. The
methods which are suitable for data mining analysis are CASE,
SPJ and PIVOT. Coming with CASE we show two possibilities
i.e. Vertical view and also the Horizontal View. This paper thus
satisfies the main concern i.e. reducing the overload on the
databases for retrieval of data.

Keywords—Data base, Data Mining, CASE, PIVOT, SPJ.

INTRODUCTION
Data Mining is the tool or a software which is used to

retrieve the data from the large set of data. The overall goal of
Data Mining is to extract information from a dataset and
transform it into an understandable structure for further use.
The actual data mining task is the automatic or semi-
automatic analysis of large quantities of data to extract
previously unknown interesting patterns such as groups of
data records, unusual records and dependencies. This usually
involves using database techniques such as spatial indices.
These patterns can then be seen as a kind of summary of the
input data, and may be used in further analysis or, for
example, in machine learning and predictive analytics. For
example, the data mining step might identify multiple groups

in the data, which can then be used to obtain more accurate
prediction results by a decision support system. Neither the
data collection, data preparation, nor result interpretation and
reporting are part of the data mining step. Data mining uses
information from past data to analyse the result to be shown to
the user.

Data Mining in real time is used everywhere, to extract the

data. For example, if we have to search for a book in a room
which contains some n books then no doubt we can get that
book but the factor is how fast we can get that book from that
room. For this effective output we need to implement data
mining algorithms which help us to retrieve the desired book
without wasting the time in searching that book. In the same
manner we also have some data mining queries for retrieving
the data from the huge database with less time and also
reducing the burden on the database. This can be achieved
using the methods like CASE, SPJ and PIVOT. All these three
methods are useful and reduce the burden on the database and
also fetch the result in less time thus making the application
safe and flexible. The queries written above are used to fetch
the results in smart way but the queries are complex and big.
Something which has a benefit also has a drawback, the
drawback is not affecting the designed system but is the
complex type for writing the query based on the required
output.

Creating a data set according to data mining requirements is

time consuming and requires long SQL statements. Even
though we are using automatically generated tool for data set,
we have to customise dataset as per requirement. For this
purpose we use joins and aggregations for creating data sets.
We are focusing on aggregations. Most commonly used
aggregations are sum of a column, average, maximum value,
minimum value or row count and many aggregation functions
and operations are available in SQL. All these aggregation
functions have limitations like they returns scalar values. The

International Journal of Computer Trends and Technology (IJCTT) – volume4Issue8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2801

main reason is, datasets stored in database come from On-Line
Transaction Processing (OLTP) which is highly normalized.
But data mining and machine learning algorithms requires
elaborated aggregated form. Significant effort is needed to
compute the aggregations on multi table structure. Standard
aggregations are difficult to edit when they are performing on
multiple tables which are having high cardinalities in many
resultant rows. To perform the analysis of mined databases on
spreadsheets, it may be more flexible to having the aggregated
functions on single group on single row. For example produce
graphs, charts or compare datasets with repetitive information.
OLAP tools generate SQL cod which transpose results more
efficiently on aggregation and transposition mechanisms.

These horizontal aggregations produce added features of
traditional SQL aggregations, which return a set of values in a
horizontal layout, instead of a scalar values.

 PROPOSED METHODOLOGY

Our proposed horizontal aggregation provides effective and

easy process for creating datasets in data mining projects. Our
aggregate functions creates a interface to generate SQL Code
from data mining tools, these SQL code can be used to create
SQL queries which are automatically created and used in data
set formations.

In this section we are defining some SQL queries which are

used in entire our proposed methods. Consider a table F
having a simple primary key K represented by an integer, p
distinct attributes and one numeric attribute:
,ଷܦ,ଶܦ,ଵܦ,ܭ)ܨ … … . In OLAP terms, F is a fact table .(ܣ,௣ܦ,
with one primary key column, p distinct columns and one
measure column passed to standard SQL aggregations. That
means we are manipulating table F as a cube with p
dimensions. These dimensions are used to group the columns
for aggregations. Another two important tables used in our
proposed method is Vertical Table (ܨ௏) and Horizontal Table
 .(ுܨ)

Consider a SQL aggregation (e.g. sum()) with the GROUP

BY clause, which returns results in a single row format. Let
assume there are j + k GROUP BY columns and the
aggregated attribute is A. The results are stored on table FV
with j + k columns and making A as a non-key attribute. The
goal of a horizontal aggregation is to transform FV into a table
FH with a horizontal layout having n rows and j + d columns,
where each of the d columns represents a unique combination
of the k grouping columns. The n rows represent records for
analysis and the d columns represent dimensions or features
for analysis. Therefore, n is data set size and d is
dimensionality. In other words, each aggregated column
represents a numeric variable as defined in statistics research
or a numeric feature as typically defined in machine learning
research.

A. SQL Code Generation
In our proposed methodology key role is SQL Code

Generation and transposition. Then we extend the SELECT
statements with any of the traditional clause that generates the
aggregate functions. Let’s take a example an SQL statement
that take a subset ܮଵ.......ܮ௠ fromܦଵ ...ܦ௠

SELECT ܮଵ.......ܮ௠, sum (A) FROM F GROUP BY
 ;௠ܮ.......ଵܮ

This query will produce a table with m+1 columns with one
group of each distinct combination of values and aggregated
value. It takes three inputs table, grouping columns, aggregate
column. We partition the GROUP BY list into two sub lists:
one list to produce each group (m columns ܮଵ.......ܮ௠) and
another list (k columnsܴ1……….ܴ݇) to transpose aggregated
values, where {ܮଵ.......ܮ௠} and ܴ1……….ܴ݇ doesn’t have
common values.Each distinct combination.

Horizontal aggregation maintains standards of SQL
aggregation functionalities. The main difference is returning
dimensions. Standard SQL aggregations return vertical
dimensions results where our proposed functions returns
horizontal dimensions.

B. Proposed Syntax
Here we are elaborating SQL aggregate functions with a

extension of BY clause followed with a list of columns to
produce horizontal set of numbers.

SELECT Lଵ, Lଶ … … . L୨ , H(A BY Rଵ, … R୩)

FROM F GROUP BY Lଵ … … L୨

The sub group columns ܴଵ … …ܴ௞ should be a parameter of

aggregation. Here H() represents SQL aggregation. It contains
at least one argument represented by A. The result rows are
represented by ܮଵ … … ௝ in group by clause. Andܮ
ଵܮ) … … ∩(௝ܮ (ܴଵ … .ܴ௞) = ∅.

We have tried to save SQL evolution semantics as possible.
And also we have to make efficient evolution mechanisms. So
we are proposing some rules

(1) GROUP BY clause is optional,
(2) If GROUP clause is present, there should not be a

HAVING clause,
(3) Transposing BY clause is optional.
(4) When BY clause is present, horizontal aggregation

reduces the vertical aggregation.
(5) Horizontal aggregation may combined with vertical

aggregation or other horizontal aggregation.
(6) As for F does not changes horizontal aggregation can

be combined.

C. SQL Code Generation

International Journal of Computer Trends and Technology (IJCTT) – volume4Issue8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2802

Here we will discuss on how to generate SQL code to
create horizontal aggregation automatically. We discuss the
structure of the result table and query optimisation methods.
We propose evolution methods produce the same result.

1) Locking

It is mandatory to use locking in creating consistent
query evolution. Main reason of inconsistency in query
evolution is multiple insertions into tables F.
 It can create the extra columns in ܨு
 It changes the number of rows ܨு
 It changes aggregation values in ܨு

In other words the SQL statements becomes long
transaction. Horizontal aggregation can operate on static
database without consistency problem.

2) Table Definition

Let assume resultant table as ܨு and having d
aggregation columns with one primary key. The
horizontal aggregation function H() will return set of
values for each ܮଵ … … ுmust contains aܨ ௝. Then tableܮ
primary key column and non key column combination of
valuesܴଵ … … .ܴ௞. we will get distinct values of
ܴଵ … … .ܴ௞ with help of

SELECT DISTINCT ܴଵ … … .ܴ௞ FROM F

 This SQL statement returns a table with d distinct
rows where each row is used to define one aggregation
column. It contains a primary key and j + d columns for
data mining analysis.

D. Query Evolution Methods
In this paper we are proposing three evolution methods to

horizontal aggregation. First method SPJ, which depends on
relational operations that means select, join, retrieving and
aggregations. Second is CASE, in this each table will contains
primary key column to join process. The third method uses
built in PIVOT operator which converts rows to columns.

1) SPJ Method
SPJ method is based on relational operations. In this

method we create a table with vertical aggregation
columns for each result column and join these tables to
produceܨு. We aggregate from F into d projected tables
with d. Each table contains primary key and aggregation
on as only non-key column. We propose two basic
methods to generate ܨு.first method directly aggregates
from F. Second method joins vertical aggregation in
temporary table ܨ௏ with grouping columns to
computeܨு.

Here we are proposing a indirect aggregation based
on intermediate table ܨ௏ , which is used in both SPJ and
CASE methods.
Assume ܨ௏be a table contains vertical aggregations
௝ܮ………ଵܮ , ܴଵ………ܴ௄ and V() be a vertical aggregation for
H().
The query to compute ܨ௩ as

INSERT INTO ܨ௩
SELECT ܮଵ..........ܮ௝ , ܴଵ……..ܴ௞, V(A)
FROM F
GROUP BY ܮଵ………ܮ௝ , ܴଵ………ܴ௄;

Table ܨ଴ defined as a number of resultant rows and one
primary key. So ܨ଴ is combination of ܮଵ………ܮ௝ .

INSERT INTO ܨ଴
SELECT DISTINCT ܮଵ………ܮ௝
FROM {ܨ|ܨ௩}

Tables ܨଵ....... ܨௗ contains each aggregations of
ܴଵ...... ܴ௞. Primary key of tableܮଵ....... ܮ௝.

ܴଵ … …ܴ௞
Select distinct

SPJ
d left joins

CASE
d sum(CASE) terms

Compute table ܨு

PIVOT
d pivot columns

ܴଵ … …ܴ௞
Select distinct

Compute ܨ௩

CASE
d sum(CASE) terms

PIVOT
d pivot columns

SPJ
d left joins

Compute table ܨு

International Journal of Computer Trends and Technology (IJCTT) – volume4Issue8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2803

INSERT INTO ܨଵ
SELECT ܮଵ … … . ௝ܮ ,V(A)
FROM {ܨ|ܨ௩}
WHERE ܴଵ=ݒଵூ AND ...AND ܴ௄=ݒ௞ூ
GROUP BY ܮଵ...... ܮ௝.

 Then Each table ܮூ aggregates those rows corresponds
to I unique combinations given by WHERE clause.
Finally we get ܨுwith help of joining d+1 table with d
joins.

INSERT INTO ܨு
SELECT
௝ܮ.଴ܨ……… ଶܮ.଴ܨ ,ଵܮ.଴ܨ
 ܣ.ௗܨܣ.ଶܨ ,ܣ.ଵܨ
FROM ܨ଴.
LEFT OUTER JOIN ܨଵ
ONܨ଴.ܮଵ =ܨଵ.ܮଵ and……and ܨ଴.ܮ௝ ௝ܮ.ଵܨ=
LEFT OUTER JOIN ܨଶ
 ON ܨ଴.ܮଵ =ܨଶ.ܮଵ and……and ܨ଴.ܮ௝ ௝ܮ.ଶܨ=
…….
LEFT OUTER JOIN ܨௗ
ON ܨ଴.ܮଵ =ܨௗ ଵܮ. and……and ܨ଴.ܮ௝ ௗܨ= ௝ܮ.

Query may feel complex but evolution is efficient and
effective.

2) CASE Method
The CASE statement returns scalar value which is

selected from a set of values based on Boolean
expressions. We propose same two methods as in SPJ to
evaluate the ܨு in CASE method also. First method
aggregates directly where second method computes ܨு
from intermediate tablesܨ௩.

Here we are explaining direct aggregation process.
Aggregation queries can generate directly from F and
converts row tables to column tables at the same time to
evaluate ܨு. We need to find unique combinations of
ܴଵ........ܴ௞ which matches the Boolean expression for
result columns. Let assume V() is vertical SQL
aggregation that has a CASE statement as argument.
Here we need to make the result as null when there are
no qualifying rows found for horizontal aggregation
group.

SELECT DISTINCT ܴଵ........ܴ௞
FROM F;

INSERT INTO ܨு
SELECT ܮଵ........ܮ௝
V(CASE WHERE ܴଵ=ݒଵூ AND ...AND ܴ௄=ݒ௞ூ
THEN A ELSE null END)
...
V(CASE WHEN ܴଵ=ݒଵௗ AND ...AND ܴ௄=ݒ௞ௗ

THEN A ELSE null END)
FROM F
GROUP BY ܮଵ,ܮଶ, … . . ௝ܮ .
This SQL query generates aggregations in a single scan
on F.

3) PIVOT Method
We think PIVOT operator is built in operator in a

commercial DBMS. The PIVOT method requires to
determine how many columns are needed to store the
evaluated table and it can be joined to GROUP BY
clause. Basic query syntax for PIVOT to compose
horizontal aggregation assuming one by column for right
key column.

SELECT DINSTINCT ܴଵ
FROM F;

SELECT ܮଵ,ܮଶ,………ܮ௝ ,ଶݒ,ଵݒ , … ௗݒ…
INTO ܨு
FROM(
SELECT ܮଵ,ܮଶ,………ܮ௝ ,ܴଵ,A
FROM F) ܨ௧

PIVOT(V(A) FOR ܴଵ in (ݒଵ, ,ଶݒ … ௗݒ…
) AS P;

In this query nested query reduces F from columns that
are not later needed.

 EXPERIMENTAL EVOLUTIONS

Here we are providing our experimental evolutions on our

proposed methods in the aspects of query optimization, time
complexity, table size and output data dimensionality.

A. Query Optimization
We evaluated optimization strategies for aggregation

queries with synthetic data sets generated by TPC-H
generator. We used large synthetic data sets to analyse queries
with only horizontal aggregation, which having different
groups and horizontal columns.

Our goal is improve the accessibility obtained by pre
computing a cube and storing it on ܨ௩ . we optimising to the
PIVOT operator. Table I shows the impact of removing
columns not needed by PIVOT.

n d Trim=N trim=Y
1K 7
 12
 25

282 58
386 62
501 61

1.5M 7
 12
 25

364 157
408 140
522 161

International Journal of Computer Trends and Technology (IJCTT) – volume4Issue8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2804

B. Time Complexity

CONCLUSION
We have proposed a work for data mining analysis which

helps the user to retrieve the data as their requirement in less
amount of time and also reducing the burden on the system
whereby accepting multiple inputs from user to perform the
search and show the output. Here we proposed three basic
methods to elaborate horizontal aggregation, first CASE
method; it derives the complete CASE construct. Second SPJ,
it is derived on standard relation algebra operations and third
PIVOT, using this we can perform some DBMS offered
operations. The CASE and PIVOT methods perform linear
scalability, where SPJ does not perform. We performed the
experimental evolutions on our proposed work with PIVOT
and SPJ. We have implemented this concept on a real time
client which is Electricity board, here the admin will be
performing the data mining using all these queries on a
particular user in that locality. Thus after implementation we
can conclude that the usage of these queries reduces the
burden on the database and processing will be made faster
when compared to the normal process.

REFERENCES
G. Bhargava, P. Goel, and B.R. Iyer. Hypergraph based
reordering of outer join queries with complex predicates. In
ACM SIGMOD Conference, pages 304.315, 1995.

J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and C.
Kleinerman .NET database programmability and extensibility
in Microsoft SQL Server. In Proc. ACM SIGMOD
Conference, pages 1087.1098, 2008.

J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman.
Non-stop SQL/MX primitives for knowledge discovery. In
ACM KDD Conference, pages 425.429, 1999.

E.F. Codd. Extending the database relational model to capture
more meaning. ACM TODS, 4(4):397.434, 1979.

C. Cunningham, G. Graefe, and C.A. Galindo-Legaria.
PIVOT and UNPIVOT: Optimization and execution strategies
in an RDBMS. In Proc. VLDB Conference, pages 998.1009,
2004.

C. Galindo-Legaria and A. Rosenthal. Outer join
simpli_cation and reordering for query optimization. ACM
TODS, 22(1):43.73, 1997.

 AUTHOR PROFILE

Rajesh Reddy Muley, Pursuing
M.Tech(CSE) Vikas College of
Engineering and Technology ,
Nunna, Vijayawada. Affiliated to
JNTU-Kakinada, A.P., India

Sravani Achanta, is working
with Vikas College of
Engineering and Technology,
Nunna, Vijayawada,
Affiliated to JNTU-Kakinada,
A.P., India

Prof S.V.Achutha Rao, is
working as an HOD of CSE at
Vikas College of Engineering and
Technlogy, Nunna, Vijayawada,
Affiliated to JNTU-Kakinada,
A.P., India

0

3

6

9

12

15

1 2 3 4 5 6 7 8 9

SPJ

PIVOT

CASE

