
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2760

Data structures and DBMS for CAD
 Systems- A review

Mehak Sharma*
Department of Computer and IT

C.T Institute of Management & Technology, Jalandhar,
India

Manikant Sharma
Department of Computer Science

Lovely Professional University, Phagwara,
India

Abstract - The structures for the storage of data in
CAD systems influence to a large extent the
effectiveness of the system. This paper reviews the
wide range of data structures and database
management systems (DBMS) available for
structuring CAD data. The relationship between these
basic data types, their composite structures and the
classical data models (on which many DBMS are
based) is discussed, and the limitations of existing
DBMS in modeling CAD data highlighted. This
paper also outlines the historical development of data
management systems in order to identify the key issues
for successful systems. It identifies the need for data
independence and the embedding of structural and
behavioural semantics in the database as key issues in
the development of modern systems. Hierarchical,
Network, Relational, Object-oriented and Object-
relational data management systems are reviewed. A
short summary of related research is given. The paper
concludes with some speculation on the future directions
that database technology might take.
Keywords: Data structures; Database management
systems; Computer aided design

I. INTRODUCTION
We all know that there is a discipline which we call
software engineering, it has to be the case for there are a
sufficient number of textbooks available with the phrase
appearing prominently in the title. Many worthy academic
institutions have chairs of software engineering and there
are numerous international conferences, workshops,
symposiums and the like dedicated to the exploration of
sub-areas of software engineering. It is not as clear that
there exists a similar discipline called data engineering. The
disciplines of software engineering and data engineering are
similar but have different emphases and historical roots. The
starting point for a software engineer is a task that must be
carried out on a computer. A data engineer most often
begins with a task that exists already either as a paper-based
system or in some computerised form and seeks to engineer
a better solution. A software engineer says that a program is
made up of data and algorithms and generally means
transient (main memory) data. A data engineer says that
applications are constructed to run on top of data and means
permanent (secondary storage) data. A software engineer

designs systems, a data engineer constructs a basis upon
which systems may be built. This said, the similarity
between data engineering and software engineering is
probably greater than the difference. Both disciplines
attempt to encourage principles and practices that enable
developers to speedily construct systems which match their
specifications and can be demonstrated to function
correctly. The two disciplines are about engineering
solutions to similar problems. Both disciplines attempt to
extract essential semantics from a real world situation and
preserve them in an application. Software engineering tends
to seek for ways of encoding these semantics in code whilst
data engineering embeds them in metadata.
Data structures refer to the method of organization of
data within a database or a computer program. A more
formal definition is provided by Stubbs & Webre’ who
define a data structure as ‘a data type whose values are
composed of component elements that are related by
some structure’. Data structures can also be regarded as
the combination of brick, mortar and glue that hold
databases together. The component data elements of a
data structure could be either atomic (i.e. non-
decomposable) or data structures themselves. The
relationships between these component data elements
constitute the structure and have implications for the
functioning of the data structure. They condition the set
of operations which act upon the data structure and its
component elements, as well as the efficiency with
which they perform. It is also the nature of these
relationships that differentiates one type of data structure
from another.

II. ORIGINATION OF DATA STORAGE SYSTEMS
The invention of magnetic storage media such as magnetic
tape and magnetic disks enabled the permanent storage of
large quantities of data in a manner that made them
amenable to computer processing. The term ‘large’ is not
used in absolute sense it is simply an indication that storing
punched card or paper tape representations of data was
never a realistic option for many potential data processing
applications. A number of business-related uses of
computers came into being as a direct result of this
development. Typically these relied on ‘batch’ operations.
Stored records were kept on master files. Over a period of
time a set of transactions or operations were collected and at

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2761

an appropriate time run against a master file. The master file
and the transaction file were sorted in the same order on
some key. At regular intervals the transactions were applied
to the master file and a new updated master file was
produced. At the same time a report indicating the success
or the failure of each transaction was generated.
This scenario contained a number of inadequacies. Firstly
this type of system made no attempt to describe the data it
held. The only assistance a programmer could hope to
receive from underlying software was that the operating
system could find the file. Once the file had been located on
the disk it was the programmer’s task to handle the file as a
contiguous piece of permanent storage. There was no
indication given as to whether the bytes read were
represent-ing single characters, character strings or
numbers. It was the programmer’s task to add the semantics
of the application to the stream of data retrieved from the
disk. Eventually programming language support was
provided to make this task easier, however, such support
was limited to aiding an individual programmer and not
everyone (including non-programmers) who needed to
access the data. It was possible for two programmers to
describe the same data in two different ways and hence
apply different semantics to it. What semantics were made
available in a programming language were limited to a
simple description of the way in which the data might be
displayed and did not describe the operations and
constraints that were appropriate to it.
Secondly, it was quickly recognized that this pattern of
processing was repeated time and time again. The central
logic of each program was identical, all that altered was the
details of the input and output operations. Despite this, each
program was handcrafted each time. This did not improve
productivity nor did it ensure that a solution known to be
correct was applied consistently. Thirdly, the idea of a file
of data in isolation did not correspond with the way data
was known to behave in application areas. A computer file
corresponded to what one might expect from a manual filing
cabinet. It was a bringing together of a number of fixed
format pieces of information called records. Records
consisted of a number of fields that held individual pieces of
information. The records in a file were normally sorted in
some order to allow speedy processing and retrieval. It was
known, however, that many applications relied on an ability
to retrieve records based on their relationships to records in
other files. More than this, the validity of entries in some
records depended on entries found in other files.
Implementing systems that embodied these semantics was
possible but involved the construction of quite complex
programs that were difficult to maintain.

III. TYPES OF DATA STRUCTURES
Data structures are classified according to the
relationships between their component data elements, as
well as their definition. Most data structures can be
broadly classified as static or dynamic structures as shown
in Figure 1.

3.1 Static data structures
Static data structures are by definition fixed in size and
structure throughout their lifetime. They are thus restricted
and unsuitable for modeling dynamic situations. Typical
examples of static data structures are arrays, records and
sets.
3.1.l Arrays
An array consists of a set of data elements which is
denoted by a single identifier or variable name. The
component data elements are all of the same type and
can each be accessed using an index or subscript which
refers to the position of the particular data element
within the array. The number of elements in an array is
often predefined; an overestimation of the array size
leads to memory wastage whilst an underestimation
means that not all data elements can be accommodated.
3.1.2 Records
Records differ from arrays in the heterogeneity of their
components. This means that a record structure can contain
elements of different types. For example, a book record
can be declared as follows:
VAR Book: RECORD
Title: ARRAY [0 . . 100] OF CHAR
pages: CARDINAL
Year: INTEGER
END
The components of a record are called fields and are
named. The variable, Book, can have a value assigned to
any of its fields as follows:
Book. Title := ‘The Psychological Profile of
Goalkeepers’
Records are regarded as static structures even though
their components (fields) could sometimes have a
dynamic structure (e.g. a list of the book’s chapter
headings). This is because the basic structure remains
static and it is not possible, for example, to introduce a
new record field.
3.1.3 Sets
Sets are collections of data elements which are similar to
arrays in being homogeneous. However, the elements of the
structure are related only by their membership in the set.
MODULA-2 sets have two restrictions - they must
contain constants only and the base type of a set must
be an enumeration or sub-range type.
3.2 Dynamic data structures
Unlike static data structures, dynamic data structures do
not have a fixed size; they can grow and shrink as
required and can represent dynamic real world
situations (such as a queue). Dynamic data structures
provide for more efficient memory management as
memory is allocated only when needed and freed
memory locations can be reused. Linked lists and trees
are examples of dynamic data structures. An important
tool in the construction of these data structures is the
pointer - a data type whose values are the locations of
the values of other data types.’ The component data
elements of dynamic data structures (also called nodes)

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2762

store pointers to one or more other data elements in
addition to their own values; these pointers establish the
relationships between these nodes.
3.2.1 Linked lists
Linked lists consist of nodes each of which contains a
pointer to the next node in the list. A list in which
the nodes store pointers to both their successor and
predecessor nodes is called a doubly linked list and has
the advantage that traversal of the structure can be bi-
directional, as shown in Figure 2. Stacks and queues can be
represented by linked lists. A stack exhibits a last-in-first-
out (LIFO) protocol; all insertions and deletions are
made at the same end of the data structure. In contrast,
a queue has insertions and deletions occurring at
opposite ends of the data structure - a fist-in-first-out
(FIFO) protocol. Linked lists may be ordered with
respect to a given key; insertions and deletions are
controlled by that key and can take place at any point
within the structure such that the order of the list is
maintained.
3.2.2 Trees
Trees, unlike lists, are nonlinear data structures. However,
like lists, they are capable of recursive definition (i.e. being
defined in terms of themselves). A tree is either empty
or consists of a unique node called the root node
together with any number of subtrees. Each node
(except the root) has a unique ‘parent’ and each non-
terminal node has one or more ‘children’. A tree is a
natural structure for keeping track of information that
has a one-to-many (or hierarchical, or nested) relationship
among its elements. Figure 3 illustrates a general tree
structure. Variants of this general structure include binary
trees (in which each node has at most two children) and
B-trees (balanced trees in which all terminal nodes are
the same distance from the root).

Figure 1 Types of data structures.

(a) Singly linked list

 (b) Doubly linked list
 Figure 2 Linked lists.

Figure 3 General tree structure.

3.3 Composite data structures
A composite data structure results when a data structure
is made up of a combination of static and/or dynamic
data structures. The use of composite data structures
offers the software developer a great deal of flexibility
in data structuring. Useful composite data structures
include arrays of records (e.g. a table) and arrays of
pointers. Many computer programs and DBMS
(presented in the next section) make use of composite
data structures of one form or another.

IV. DATABASE MANAGEMENT SYSTEMS (DBMS)
A DBMS is a computer software system consisting of a
database structure and programs to manage the database.
It usually provides facilities for the organization, access
and control of the database. Database management
systems are widely used commercially and are classified
according to the type of data model employed as shown
in Figure 4). The three most popular data models are the
hierarchical data model, the network data model and the
relational data model. A relatively new data model, the
object-oriented data model (OODM), has also been
discussed.

4.1 Hierarchical systems
In the late 1960s, magnetic tape was still a major medium
for data storage. Tape does not have the addressing
flexibility of the magnetic disk and therefore a data model
that supported sequential access was necessary for this type
of storage. This requirement led to the development of the
hierarchical model of data implemented in IBM’s database
product: Information Management System (IMS). Any
hierarchy of records can be represented as a sequence and
such a sequence can be stored on magnetic tape. The first
major data model came into being purely out of
consideration for the underlying physical storage it had to
work on. The original use intended for IMS was “bill of
materials processing” and the data model chosen was ideal
for this purpose.

Figure 4 DBMS data models.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2763

This type of application deals with facts such as “Part A is
constructed from Parts B and C, Part B is constructed from
Parts D, E and F”. This is a natural hierarchy (tree) and is
easily mapped to the IMS data model. More complex
scenarios required extensions to the original model so that
data whose relationships could not be represented by a
single tree could efficiently stored as a collection of trees.
IMS did not capture the semantics of the data it stored
beyond being able to represent relationships between
records. Individual fields were not identified by the database
management system; a record was defined simply as a
number of bytes into which data could be placed. As a
consequence it was unable to support ad hoc queries. The
processing semantics were entirely embedded within the
programs written for applications and it was necessary to
write programs in order to access the database.
4.2 The network model
The network data model is a generalization of the
hierarchical data model. It represents data as a set of
record types and pair-wise relationships between record
types. It does not observe the single-parent rule of the
hierarchical data model; a child record can have any
number of parents. This enables the network model to
represent arbitrary relationships (including non-
hierarchical ones) amongst entities. The complexity of the
network data model is a major disadvantage. Any increase
in the number of records means an increase in the
number of pointers used to establish the relationships
between the records. This has adverse maintenance
implications and also makes network models difficult to
use. Another disadvantage is that the basic structure of
network of associations has to be pre-established so that
the pointers can be set up and maintained as new records
are added; this is unsuitable for design.
Several examples of network data models are available;
these are usually referred to as CODASYL (Conference
on Data Systems Languages) systems. Notable amongst
them is IDMS (Integrated Database Management System).
Figure 5 shows logical diagrams of relationships in both the
hierarchical and the network models. In the hierarchy, a
record of type A may be related to many records of type B
and many records of type C. This is all that is permitted. In
the network diagram a record of type D may be related to
many records of type F and also to many records of type G.
This could be represented in the hierarchical model.
However, the diagram also indicates that a record of type E
may be related to many records of type G. These additional
relationships would not be permitted in a pure hierarchical
model. Given these two one-to-many relationships it is
possible to construct many-to-many relationships between
records of type D and records of type E (i.e. a record of type
D may be related to many records of type E and vice versa).
4.3 The relational model
In the relational data model, tables (or relations) are
used to represent data. Each relation is a two-
dimensional table consisting of a fixed set of attributes
(or columns) and a time-varying set of tuples (or rows).

Figure 5 Comparison of hierarchy and network.

Tuples are equivalent to record instances and the
associations between them are determined not by
pointers or computer memory addresses, but on the
basis of identical contents in the attribute fields of
different tuples. Columns are named and contain values
of the same type whilst rows are distinct, have a unique
identification key or primary key (i.e. no duplicate tuples
allowed) and are not ordered. The relational data model
is rich in its ability to represent directly a wide variety
of relationship types’ and does not require any pre-
definition of physical access paths to represent
associations between different records. On the other hand,
it has limited capabilities for data abstraction and its
inherent redundancy makes normalization operations
necessary.
4.4 The object-oriented data model (OODM)
This is a relatively new data model for DBMS. Object-
oriented systems are believed to have their roots in
programming languages such as SIMULA and
SMALLTALK” and have the following characteristics:
abstraction of data, inheritance of properties and
encapsulation of data and operations.” In OODM, all
conceptual entities (and relationships) are modeled as
objects; an integer or string is as much an object as is a
complex assembly of parts. Objects are grouped into
classes with lower level objects (sub-classes) inheriting
the properties of their parent classes (superclasses).
Thus, object classes are organised into a simple hierarchy.
In many systems, however, a class can have more than one
superclass, thereby generalising the hierarchy into a lattice
(or network) structure.
An object consists of a private memory (which holds its
state and is made up of the values for a collection of
instance variables) and a public interface (which is made
up of messages and their associated arguments, through
which objects communicate with one another). OODM
have the potential to represent complicated relationships
and support object versions and transaction
management. They are seen as a potentially useful model
for many engineering applications. Many experimental
models have been developed and it will not be too
long before OODM achieve the same level of success as
the other data models discussed earlier.
4.5 Semantic models
The separation of storage concerns from mechanisms for
representing real world information found in the

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2764

ANSI/SPARC architecture and the relational model allowed
a number of researchers to concentrate on so called
“semantic” models. The purpose of these models was not
necessarily to produce something that could be immediately
implemented but rather to provide a mechanism through
which the structural aspects of a real world situation could
be captured. The simplest of these models was the entity
relationship model [1]. This offered little more in the way of
semantics than the relational model, however, through its
diagramming technique it provided a means by which a
database designer could present an overview of the essential
aspects of a database schema. The entity relationship model
was later enlarged to allow the expression of data semantics,
which cannot be directly, represented using a relational
database [2]. Hammer and Mcleod’s semantic database
model (SDM) [3] was a particularly rich example of this
type of model. Whilst these models were not incorporated
into widely available database products, they helped to
demonstrate the limitations of the relational model. Kent [4,
5] also addressed these limitations directly in a paper and an
influential book. The shortcomings that were identified did
not single out classes of applications which could not be
constructed using relational technology instead they
highlighted a case where important data semantics would
reside in the application programs and not in the database.
The semantic models clearly demonstrated that
classification was an essential mechanism for capturing the
full structural semantics of an application and this fact
increased the interest generated by object-oriented database
systems.

V. OBJECT-RELATIONAL SYSTEMS
The publication of the object-oriented database manifesto
[6] led to an almost immediate response from those inter-
ested in the further development of relational systems [7].
Proponents of the extension of relational technology argue
that object databases have been evolved primarily to support
programming language interaction with data and that this
requires very different techniques than those required to
support a query language. Consequently whilst object data-
bases are efficient for supporting complex data they cannot
efficiently support query languages, especially query
languages which allow updates. The object-relational camp
identifies the major weakness of conventional relational
systems as an inability to support complex data. The
solution proposed is the addition of facilities for handling
such data on top of existing SQL facilities.
Stonebraker [8] argues that this requires the addition of the
following four features:
(i) Support for base type extensions in an SQL context
(ii) Support for complex objects in an SQL context
(iii) Support for inheritance in an SQL context
(iv) Support for a production rule system.
Base types in traditional relational systems usually include
character, string, integer, fixed point, floating point, date
and time. A base type is one that cannot be decomposed into
any further fields. Object-relational systems allow the
database designer to define new base types. Such a

definition will involve the construction of code that defines
basic operations on these new types. Once this has been
written the new types can be incorporated into SQL queries
in exactly the same manner as the built-in types. To be able
to make full use of extensible base types the system must
also allow the construction of user defined functions and
operators. In the relational model attributes are traditionally
atomic. That is they cannot be decomposed by the database.
Object relational systems support complex objects which
consist of aggregations of values of other types. In an
object-relational system, mechanism exist for the definition
of complex objects, complex objects may be manipulated by
SQL queries, complex objects may be used to introduce new
types into the system and it is possible to introduce user
defined functions which operate on complex objects.
Inheritance is one of the key concepts of object-orientation.
In object-oriented programming it allows a programmer to
re-use already written code when defining a new type.
Inheritance has been introduced into object-relational
systems in order to re-use complex object definitions and
the user-defined functions that operate on them. It is
possible to define a subtype of an existing type. The new
type will inherit the data and the functions of its super-type.
The increased complexity of the applications it is possible to
build through the use of object-relational systems require
additional integrity constraints to those provided in
conventional relational systems. One mechanism exploited
for this is the use of rules. Each rule is associated with an
event. When that event occurs, the operation associated with
the rule is carried out. Rules are used to ensure that the
database is maintained in consistent state and returns
consistent answers to queries. These four types of
extensions appear to be logical devel-opments of relational
technology. They do, however require relational vendors to
completely re-engineer their offerings. One key area of
concern is query optimization. The ability of a relational
database management system to transform submitted
queries into optimized equivalents was cited above as one of
the major benefits of the relational approach.

VI. SIMULTANEOUS DEVELOPMENTS
The previous discussion has dealt with the general trends of
commercial database management systems. In parallel with
these developments there has been much research into other
aspects of database technology. These research strands have
looked at applications that have been largely ignored by the
commercial vendors. This section presents a summary of
these areas.
6.1 Deductive databases
Deductive databases provide mechanisms whereby new
facts can be inferred via rules from data stored in the data-
base. They provide a mechanism for capturing behavioural
semantics within the database in a declarative manner [9-
11].
6.2 Active databases
Active database research looks at the way database
management systems can be built so that the system is able

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2765

to react to events occurring in the database [12-14]. Again
the key issue is to develop mechanisms which can be stored
within the database rather than in an external program.
6.3 Temporal databases
Temporal database systems deal with situations where facts
are associated with a time [15, 16]. Time can be handled
successfully using a relational database but only with
considerable effort on the part of the implementor.
Temporal database systems add time-related semantics to
conventional systems.
6.4 Distributed databases
Initially database systems were regarded as a centralized
information resource located on a single central computer.
This no longer matches the structure of today’s
multinational companies or indeed the way many smaller
companies organize themselves. Distributed database
research seeks to devise solutions to the issues that arise
where global data is found in a number of geographically
distinct locations [17-20].
6.5. Multimedia databases
The proponents of both object-oriented and object-relational
database management systems cite multimedia as an
application area in which their systems will be effective.
This is because multimedia is an area where the use of
complex objects will be essential. Much research has been
undertaken to determine what the requirements of this type
of system will be [21, 22].
6.6 Spatial databases
In conventional data processing databases relationships are
relatively simple and involve a limited number of entities.
For example, a part appears on an order. In three-
dimensional space every entity relates to every other entity
and the relationships are much more complex. Spatial data-
bases attempt to capture these semantics [23].
6.7 Component database systems
Component database systems are database management
systems, which can be extended through the addition of
software components [24, 25]. This is an extremely
promising field of research and may well form the basis for
the next major development in commercial data
management systems.

VII. LIMITATIONS OF CONVENTIONAL DBMS IN
CAD APPLICATIONS

DBMS employing some of the data models discussed above
are widely used commercially. Some have been applied to
the storage of CAD data with varying degrees of success
but it is generally accepted that they do not provide an
ideal solution. CAD applications often impose additional
requirements which are not adequately provided for by
conventional DBMS. This is mainly due to the special
characteristics of CAD data and the nature of the
desired processing functions; these differ significantly
from those of business data and have led to the
development of purpose-written DBMS for CAD. In
contrast to commercial applications which deal with
well-structured and fairly homogeneous data, CAD

applications handle a wider range of data types
including graphical, textual, procedural and other data.
The relationships between the various CAD data
elements are much more complex than the relatively
simple relationships between business data elements.
Many cyclic, recursive and other object-specific
relationship types exist amongst CAD data elements
and need to be suitable represented.
The effective handling of geometrical and non-
geometrical data required by the engineer is often not
available in commercial DBMS. Strong links are
necessary between them to reinforce the bond between
the graphical design representation and its non-graphical
attributes. Baron [26] sees the separate handling of
these two data types as not contributing to the ease of
use of existing DBMS. It also makes it harder to
maintain consistency between them and incurs a time
penalty in responding to interactive queries originating
from the CAD system.
The static schema definition of most DBMS is
incompatible with the evolutionary nature of
engineering design. CAD data structures grow with the
design of the artifact and cannot be constrained to a pre-
defined structure. Other limitations of the business-
oriented DBMS include their limited tools for integrity
maintenance and inability to support multiple
representations. Because of their static structure,
commercial DBMS have difficulty in coping with
changes and modifications in the evolving design;
inconsistencies could be introduced into the database
which are expensive to eliminate. Also, the need for the
designer and/or other design team members to view
CAD data from different perspectives is not usually
supported. The limited speed of the access mechanisms
of commercial DBMS makes them unsuitable for
interactive engineering design which has strict
requirements for response times. This is becoming less
of a problem than hitherto as current DBMS become
more interactive. Much of CAD information is
interpreted and not explicit; there is therefore the need
for the semantics of CAD data to be conveyed by
DBMS. Conventional DBMS do not adequately provide
for this and are unable to maintain the semantic
integrity of the data.
The preceding catalogue of CAD data characteristics
which are not optimally handled by commercial DBMS
is not exhaustive but will suffice to illustrate the
problem.

VIII. REQUIREMENTS FOR A CAD DBMS
Attempts have been made by Kimura et a1.,[27] and
Managaki [28] to identify the peculiar requirements of a
CAD DBMS. Liu’s criticism of conventional DBMS
centres on the relational database but he also points out
that similar limitations can be found in the hierarchical
and network models, and goes on to deduce some
‘special requirements’ for CAD database systems.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2766

Foisseau & Valette [29] also address the issue of CAD
database requirements but, perhaps, the most
comprehensive set of requirements can be found in the
functional specification put forward by Staley [30].
A CAD DBMS requires similar facilities as a
conventional DBMS but needs to be much more flexible
to cope with the special characteristics of CAD data.
The additional facilities required include the following:
(i) A support for dynamic model definition reflecting the
evolving nature of the design which cannot be pre-
defined. The designer should be able to define new
classes of data, refine them or redefine them, and
operate on the stored data all along the design process.
(ii) The wider range of data types which are contained
in the definition of a CAD model should be supported.
Closely related to this is the ability to adequately cope
with both graphical and non-graphical design
information.
(iii) Relational DBMS have been faulted for their
limited capabilities for data abstraction; it is believed that
a support for abstract data types can enhance their use for
storing and managing CAD data.
(iv) A CAD database should have the ability to handle
the large volume of data associated with CAD. The
complex inter-relationships between these items of data
also need to be adequately represented; this will ensure
efficient retrieval of information and limit response
times.
(v) Maintenance of data integrity is of utmost importance.
Unlike in business-oriented DBMS where relationships are
relatively simple and constant over time, CAD data is
in a state of evolution and there is the requirement for
a mechanism for maintaining integrity and consistency of
data.
(vi) Somewhat related to the above is the requirement for
version control. Version control must allow for the
development of alternative engineering designs that can
be globally evaluated prior to permanent updating of the
database.
(vii) A facility for long transaction processing in
contrast to the shorter transaction durations in business
applications is necessary in a CAD database. An
engineer generally works for long periods on a set of
data in an interactive mode; updating operations need to
take account of this.
(viii) There are usually several parties involved in an
engineering project and the CAD database has to provide
for concurrent access (and distributed processing where
access from remote stations is required). This multi-user
access to the CAD database whilst necessary, induces a
need for some form of security or access control
facility to prevent data being corrupted or interfered
with.
(ix) In engineering design, it is sometimes necessary to
see data from several perspectives or at various levels
of detail. Thus, a CAD database should have the
capability to support multi-representations/multi-views of

objects and detail level control. The data in view remains
essentially the same but is able to communicate different
aspects of design information to the end-user/designer
depending on his point of view.
(x) A CAD database should satisfy the need for
information to be derived from stored data. This implies
a capacity for some level of embedding of semantic
information or knowledge encapsulation within the
database. A knowledge-based approach is expected to
facilitate information deduction and decision-making.
Additional requirements could be added to those
highlighted above - some more specific to different
CAD applications and others applying to databases in
general. The ideal CAD database is not yet a physical
reality; this is buttressed by the conclusion of a SERC-
sponsored assessment of databases for engineering to the
effect that ‘no database management system (DBMS)
currently available can provide all of the facilities
required in engineering applications. However, this is an
area of active research and it may not be too long
before a suitable CAD DBMS emerges; such a system
will need to incorporate the preceding requirements.

IX. ROLE OF PRODUCT MODELS
Product models are seen in many circles as a means of
addressing the above requirements. A product model is an
abstract definition of a product with, ideally, all
relevant product data stored in the model and able to
be abstracted to documents in various formats. It
contains product data which is defined by the
International Organisation for Standardisation (ISO) as
‘a representation of facts, concepts, or instructions about
one or more products in a formal manner suitable for
communication, interpretation, or processing by human
beings or by automatic means’. The product model thus
contains both geometric and non-geometric information
and uses the concepts of the discipline involved. It is
usually intended that the model defines the various data
generated through the product life-cycle - from
specification through design to manufacture. The driving
force behind the continuing evolution of product models
has been the STEP standard which seeks to facilitate
the transfer (between CAD systems) of both graphical
information and the underlying non-graphical
engineering information. While they offer significant
potential for addressing the requirements for an
engineering DBMS, there are still difficulties to
overcome before product modeling-based systems are
commercially available. The differences across
engineering disciplines in the nature of the product
being modeled serves only to further complicate issues.
However, appropriate frameworks for the development
and utilization of product models in many disciplines
(including construction) are being formulated.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2767

X. CONCLUSIONS AND FUTURE WORK
This paper has attempted to show by considering the

history of the development of database management
systems, what such systems are about and what makes
certain systems successful in the world of business and
commerce. The key issues identified are:
(i) Database management systems must hide the complexity
of permanent storage mechanisms from programmers.
(ii) Database management systems must act as a tool to
speed up application development.
(iii) Database management systems must provide facilities
suited to the requirements of the environment they exist in,
over time these requirements will become more complex.

The development of database technology has
largely been driven by the emergence of new application
areas. The key drivers of the future are likely to be
multimedia and Internet applications. We should expect to
see developments in the database world that provides
facilities for dealing with these challenges. In the past we
have seen database technology applied almost exclusively to
data processing requirements. This concentration on a single
area has led to a situation where one flavour of technology
has dominated. In the last decade other areas of computing
have become interested in the use of databases. This will
probably mean that a number of database models will
coexist. Data processing systems will probably uses object-
relational systems and SQL 3. This technology is, however,
unsuited to many other application areas and these will use
object databases. Other types of database solution may
emerge to meet new requirements.
It is clear from the above review of data structures and
database management systems (DBMS) for CAD that
careful design of these facilities is essential for the
effectiveness of a CAD system. The structures adopted
have implications for the accuracy and robustness of the
model, the speed of operation, the efficiency of data
retrieval mechanisms, and the exchange of data with
other applications to mention but a few. Existing
storage mechanisms have been shown to be inadequate
for CAD data and a set of requirements for a CAD
DBMS drawn up to highlight several desirable features.
The emergence of product models is seen as an
important opportunity to address many of the
requirements. However, there are still many practical
issues to resolve before an appropriate framework for
effective modeling of CAD data becomes a practical
reality.
References
[1] P.P.S. Chen, The entity-relationship model-toward a
unified view of data, ACM Transactions on Database
Systems 1(1) (1976) 9-36.
[2] T.J. Teorey, D. Yang,, J.P. Fry, A logical design
methodology for relational databases using the extended
entity-relationship model, ACM Computer Surveys 18 (2)
(1986) 197–222.

[3] M. Hammer, D. McLeod, Database description with
SDM: a semantic database model, ACM Transactions on
Database Systems 6 (3) (1981), 351–386.
[4] W. Kent, Data and Reality, North Holland, Amsterdam,
1978.
[5] W. Kent, Limitations of record-based information
models, ACM Transactions on Database Management
Systems March (1979).
[6] M. Atkinson, F. Banchilon, D. De Witt, K. Dittrich, D.
Maier, S. Zdonik, The object-oriented database system
manifesto, Proceedings of the First International Conference
on Distributed and Object-Oriented Design, 1989.
[7] M. Stonebraker, L.A. Rowe, B. Lindsay, J. Gray, M.
Carey, P. Bern-stein, D. Beech, Third generation database
systems manifesto, ACM SIGMOD Record 19 (3) (1990)
31–44.
[8] M. Stonebraker, D. Moore, Object-Relational DBMSs
The Next Great Wave, Morgan Kaufmann, Los Altos, CA,
1996.
[9] S. Ceri, G. Gottlog, L. Tanca, Logic Programming and
Databases, Springer, Berlin, 1990.
[10] S.K. Das, Deductive Databases and Logic
Programming, Addison-Wesley, New York, 1992.
[11] G. Wagner, Foundations of Knowledge Systems, with
Applications to Databases and Agents, Kluwer Academics,
Dordrecht, 1998.
[12] Active Rules in Database Systems, in: N.W. Paton
(Ed.), Springer, Berlin, 1999.
[13] S. Ceri, P. Fraternalli, Designing database applications
with objects and rules. Addison-Wesley, New York, 1997.
[14] K.T. Owens, Building intelligent databases with Oracle
PL/SQL. Triggers and stored procedures, Prentice Hall,
Englewood Cliffs, NJ, 1998.
[15] Temporal Databases: Research and Practice, in: O.
Etzion, S. Jajodia, S. Sripada (Eds.), Springer, Berlin, 1998.
[16] R.T. Snodgrass, The Temporal Query Language
TSQL2, Kluwer Academics, Dordrecht, 1995.
[17] A. Sheth, J. Larson, Federated database systems, ACM
Computing Surveys 23 (3) (1990) 183–236.
[18] D. Bell, J. Grimson, Distributed Database Systems,
Addison-Wesley, New York, 1992.
[19] S. Ceri, G. Pelagatti, Distributed Databases: Principles
and systems, McGraw-Hill, New York, 1994.
[20] M.T. O ¨zsu, P. Valduriez, Principles of Distributed
Database Systems, 2, Prentice Hall, Englewood Cliffs, NJ,
1999.
[21] H. Samet, General research issues in multimedia
database systems, ACM Computing Surveys 27 (4) (1995)
630–632.
[22] V.S. Subrahmanian, Principles of Multimedia Database
Management Systems, Morgan Kaufmann, Los Altos, CA,
1997.
[23] H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, New York, 1990.
[24] A. Geppert, K.R. Dittrich, Constructing the next 100
database management systems: like the handyman or like
the engineer?, ACM SIGMOD Record 23 (1) (1994) 27–33.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8–August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2768

[25] J.A. Blakeley, OLD DB: a Component DBMS
architecture, Proceedings of the 12th International
Conference on Data Engineering (ICDE), New Orleans,
February 1996.
[26] Baron N. et al., An approach to the integration of
geometrical capabilities into a data base for CAD
applications. In File Structures and Databases for CAD,
eds Encarnacao, J. & Krause, F.L., North-Holland,
Amsterdam, 1982, pp. 231-240.
[27] Kimura F. et al., Construction and uses of an
engineering data base in design and manufacturing
environments. In File Structures and Databases for CAD,
eds Encarnacao, J. & Krause, F. L., North-Holland,
Amsterdam, 1982, pp. 95-111.
[28] Managaki M., Multi-layered database architecture for
CAD/CAM systems. In File Structures and Databases for
CAD, eds Encarnacao, J. & Krause, F. L., North-Holland,
Amsterdam, 1982, pp. 315-330.
[29] Foisseau, J. & Valette, F.R., A computer aided design
data model: FLOREAL. In File Structures and
Databases for CAD, eds Encamacao, J. & Krause, F. L.,
North-Holland, Amsterdam, 1982, pp. 315-330.
[30] Staley S. M., Knowledge representation and database
management for CAD. Ph.D. thesis, Purdue University,
December 1985.

