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Abstract—Reconfigurable computing in the cloud helps to 
solve many practical problems relating to scaling out data 
centres where computation is limited by energy consumption 
or latency. However, for reconfigurable computing in the 
cloud to become practical several research challenges have to 
be addressed. This paper identifies some of the perquisites for 
reconfigurable computing systems in the cloud and picks out 
several scenarios made possible with immense cloud-based 
computing capability. 
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I. INTRODUCTION 

 

Reconfigurable computing for some time has had the 

potential to make a huge impact on mainstream high 

performance computing. We now have very large capacity 

FP-GAs which contains many highly parallel fine grain 

parallel processing power, and the ability to define high 

bandwidth custom memory hierarchies offers a compelling 

combination of flexibility and performance. However, 

mainstream adoption of reconfigurable computing has been 

hampered by the need to use and maintain specialized FPGA-

based boards and clusters and the lack of programming 

models that make this technology accessible to regular 

programmers. FPGAs do not enjoy first class operating 

system support and lack the application binary interfaces 

(ABIs) and abstraction layers that other co-processing 

technologies enjoy (most notably GPUs).  
We believe it is time to place FPGAs on the same blades as 

GPUs and CPUs in the cloud and offer them as a managed 

service with a high-level programming interface. We see a 

new dawn for reconfigurable computing that makes this 

exciting technology available to millions of developers 

without taking on the burden of maintaining specialized 

hardware, and without having to invest in complex tool-chains 

and programming models based on the low-level details of 

circuit design. This paper explores cloud-based heterogeneous 

computing and identifies some requirements needed to make it 

a reality for a wider class of developers. 
 

The major limitation on the growth potential of data-centres 

is now energy consumption and it is here that specialised 

computing resources like FPGAs can have significant impact: 

allowing us to scale cloud operations to an extent which 

inefficient using just conventional processors. 

The availability of very large scale reconfigurable 

computing devices enables the deployment of this flexible 

technology in contexts where in the past capacity limitations 

have prevented their use as a generalized, shared and 

virtualized resource. 
 
A. Cloud Computing 
 

Just a decade ago, it was common practise to purchase 

physical machines and place them with a hosting company. As 

the Internet‘s popularity grew, their reliability and avail-

ability requirements also grew beyond a single data centre. 

Sites such as Google and Amazon started building huge silos 

in the USA and Europe, with correspondingly larger energy 

demands. These providers had to provision for their peak load, 

and had much idle capacity at other times.  
At the same time, researchers were examining the 

possibility of dividing up commodity hardware into isolated 

chunks of computation and storage, which could be rented on-

demand. The Xen hypervisor was developed as an open-

source solution to partition multiple un trusted operating 

systems [1], and subsequently adopted by Amazon to 

underpin its Elastic Computing service. It became the first 

commercial provider of ―cloud computing‖—renting a slice of 

a data centre to provide on-demand resources that can be 

dynamically scaled up and down according to demand.  
Cloud computing brought reconfigurable computing to the 

software arena. Hardware resources are now dynamic, and so 

sudden surges in load can be adapted to by adding more 

virtual machines to a server pool until it subsides. This 

resulted in a surge of new data centre components designed to 

scale across machines, ranging from storage systems like 

Dynamo [2] to distributed computation with MapReduce [3]. 
 
B. Where are the Hardware Clouds? 
 

Data centers encourage horizontal scaling by increasing the 

number of hosts. The vertical scaling model (more powerful 

individual machines) is difficult due to the shift to multi-core 

CPUs with fairly constant clock speed. IBM notes that with 

―data-centers using 10–30 times more energy per square foot 

than office space, energy use doubling every 5 years, and [..] 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8– August 2013 

 

ISSN: 2231-2803                        http://www.ijcttjournal.org  Page 2568 
 

delayed capital investments in new power plants‖, something 

must change [4]. The growth potential of 

 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1. Split-trust devices on virtualised platforms have a 

management domain that partitions physical resources, 

allocates portions to guests, and enforces access rights. The 

details of the management policy is specific to the type of 

resource, such as storage or networking, these data centres is 

now energy limited, and the inefficiency of the software stack 

is beginning to take its toll. 
 

II. RESEARCH DIRECTIONS 
 

Cloud computing is quite new and evolving. We now look 

at some of the major interest areas from that community, and 

examine how reconfigurable FPGAs could help. 
 
A. Operating Systems 
 

The traditional role of an operating system of partition-ing 

physical hardware is quite different when virtualised. 

Hypervisors expose simple network and storage interfaces to 

virtual machines (VMs), with the actual physical drivers 

handled elsewhere [5]. Kernels that only run as VMs need just 

a few device drivers to work, and no longer have to support 

the full spectrum of devices. Figure 1 illustrates the difference 

between managing physical devices and using a portion of 

that resource from a virtualised application.  
The management APIs in the control domain differ across 

resource types. Networking involves bridging and topology 

and integration with systems such as Open Flow [6]. Storage 

is concerned with snapshots and de-duplication of common 

blocks across VMs [7]. However, the device exposed to the 

VMs remains simple; often little more than a shared-memory 

page with consumer/producer channel. These devices are 

currently used for I/O, but could be extended to actually run 

computation over the data, with the same high-throughput and 

low-latency requirements. The VM could specify the 

computation (e.g. as a DSL), and the management tools 

interface it with the physical board and manage sharing across 

VMs. This is simple from the programmer‘s perspective, and 

portable across different FPGA boards and tool-chains.  
The availability of GPUs and programmable I/O boards 

have led to the development of new software architectures. 

Helios is a new operating system designed to simplify the task 

of writing, deploying and profiling code across heterogeneous 

platforms [8]. It introduces ―satellite kernels‖ that export a 

uniform set of OS abstractions, but are independent tasks that 

run across different resources. 

B. Data centre Programming 
 

Processing large datasets requires efficiently partition-ing 

the computation across many hosts. Distributed data-flow 

frameworks such as MapReduce [3], Dryad [9] and CIEL [10] 

all expose a simple programming model and transparently 

handle the difficult aspects of distribution: fault tolerance, 

resource scheduling, synchronization and message passing.  
These frameworks all build Directed Acyclic Graphs 

(DAGs), where the nodes represent data and the edges are 

computation over the data. The run-time schedules compute 

on hosts and iteratively walks the DAG until a result is 

obtained. It also prepares the host to ensure required data is 

available locally. This preparation step can also include 

compilation, and so an FPGA DSL could be transparently 

scheduled to hardware (as available) or executed in software if 

not available. The main challenge is to track the cost of re-

configuring FPGAs rather than just executing it in software, 

but this is made easier since the run-time can inspect the size 

of the input data at runtime. Mesos [11] investigates how to 

partition physical resources across multiple competing 

frameworks operating on the same set of hosts, which is 

useful when considering fixed-size FPGA boards.  
The recent surge of new components designed specifically 

for data centers also encourages research into new database 

models that depart from SQL and traditional ACID models. 

Mueller et al. programmed data processing operators on top of 

large FPGAs, and concluded that the right computation model 

is essential (e.g. an asynchronous sorting network) [12]. 

Within these constraints however, they had comparable 

performance and significantly improved power-consumption 

and parallellisation—both areas essential to successful data 

centre databases in the modern world. 
 

A close integration between high-level host languages and 

FPGAs will greatly help adoption by mainstream 

programmers. The fact that C and C++ are considered low-

level languages in the cloud, and high-level to FPGA 

program-mers is indicative of the cultural difference between 

the two communities! There are a number of promising efforts 

that embed DSLs in C/C++ code to ease their integration. 

MORA is a DSL for streaming vector and matrix operations, 

aimed at multimedia applications [13]. Designs can be 

compiled into normal executables for functional testing, 
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before being retargeted at a hardware array. MARC uses the 

LLVM compiler infrastructure to convert C/C++ code to 

FPGAs [14]. Although performance is still lower than a 

manually optimised FPGA implementation, it is significantly 

less effort to design and implement portably due to its higher-

level approach. This quicker code/deployment/results cycle is 

essential to incrementally get feedback about code for the 

more casual programmer, who is using rented cloud 

computing resources in order to save time in the first place. 

Some languages now separate data-parallel processing 

 
 
 
 
 
 
 
 

 

Figure 2. Malicious data can be crafted to exploit memory 

errors and execute as code on a CPU (left). With an FPGA 

interface, it cannot execute arbitrary code, and the CPU never 

iterates over the data (right). explicitly so that they can utilise 

resources such as GPUs. Data parallel Haskell integrates the 

full range of types available modern languages, and allows 

sum types, recursive types, higher-order functions and 

separate compilation [15]. Accelerator is a library to 

synthesise data-parallel programs written in C# directly to 

FPGAs [16]. A more radical embed-ding is via multi-stage 

programming, where programmers specify abstract algorithms 

in a high-level language that is put through a series of 

translation stages into the desired architecture [17]. All of 

these approaches are highly relevant to reconfigurable FPGA 

computing in the cloud, as they extend existing, familiar 

programming languages with the constraints required to 

compile sub-sets into hardware. 
 
C. Information Security 
 

The cloud is often used to outsource processing over large 

datasets. The code implementing the batch-processing is often 

written in C or Fortran, and a bug in handling input data can 

let attackers execute arbitrary code on the host machine (see 

Figure 2, left). Although the hypervisor layer contains the 

attacker inside the virtual machine, they still have access to 

many of the local network resources, and worse, other 

(possibly sensitive) datasets. Exploits are mitigated by using 

software privilege separation, but this places trust in the OS 

kernel layer instead [18].  
Data processing on the cloud using reconfigurable FPGAs 

offers an exceptional improvement in security by shifting that 

trust from software to hardware. Baking algorithm 

implementations into FPGAs entirely removes the capability 

of attackers to run arbitrary code, thus enforcing strong 

privilege separation. The application compiles its algorithms 

to an FPGA, and never directly manipulates the data itself via 

the CPU. Malicious data never gets the opportunity to run on 

the host CPU, and instead only a small channel exists between 

the OS and FPGA to communicate results (see Figure 2, 

right). The conventional threat model for FPGAs is that a 

physical attacker can compromise its hardware SRAM. When 

deployed in the cloud, the attacker cannot gain physical 

access, leaving few attack vectors. 
 

Moving beyond low-level security, there is also a 

realisation that data contents needs protection against un 

trusted cloud infrastructure [19]. Encoding data processing 

tasks across FPGAs enforces a data-centric view of 

computation, distinct from coordinating computation (e.g. 

load balancing or fault tolerance, which cannot compromise 

the contents of data). Programming language researchers have 

mechanisms for encoding information flow constraints [20], 

and more recently, statistical privacy properties [21]. These 

techniques are often too intrusive to fully integrate into 

general-purpose languages, but are ideal for the domain-

specific data-flow languages which provide the interface 

between general-purpose and reconfigurable FPGA 

computing. 
 

Another intriguing development is homomorphic 

encryption, which permits computation over encrypted data 

with-out being able to ever decrypt the underlying data. The 

utility of homomorphic encryption has been recognised for 

decades, but has so far been extremely expensive to 

implement [22]. Cloud computing revitalises the problem, as 

malicious providers might be secretly recording data or 

manipulating results. Recently, there have been several lattice-

based cryptography schemes that reduce the complex-ity cost 

of homomorphic encryption [23]. Lattice reduction can be 

significantly accelerated via FPGAs; Detrey et al. report a 

speedup of 2.12 of an FPGA versus a multi-core CPU of 

comparable costs [24]. This points to a future where 

reconfigurable million-LUT FPGAs could be used to perform 

computation where even the cloud vendor is un trusted!  
Reducing the cost of cryptography in the cloud could also 

have significant social impact. The Internet has seen large-

scale deployment of anonymity networks such as Tor [25] and 

FreeNet for storing data [26]. Due to the encryption 

requirements imposed by onion-routing, access to such 

networks remains slow and high-latency. There have been 

proposals to shift the burden of anonymous routing into the 

cloud to fix this, but reducing the cost (financially) remains 

one of the key barriers to more widespread adoption of 

anonymity [27]. This is symptomatic of the broader problem 
of improving networking performance in the cloud. Central 
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control systems such as Open Flow are rapidly gain-ing 

traction, along with high-performance implementation in 

hardware [28]. Virtual networking is reconfigured much more 
often than hardware setups (e.g. for load-balancing or fault 

tolerance), and services such as Tor further increase the gate 

requirements as computation complexity increases [29].  
The challenge, then, for integration into the cloud, is how to 

unify the demands of data-centric processing, language 

integration, network processing into a single infrastructure. 

Specific problems that have to be addressed in addition to 

those mentioned earlier include:  
The need for better OS integration, device models, and 

abstractions (as with split-trust in Xen described earlier) 

Without an ABI or source API, software re-use and 

integration is very difficult. How can (for example) Open SSL 

transparently take advantage of an FPGA?  

Debugging  and  visualization  support.  General  purpose 
systems provide a hypervisor-kernel user space language 

runtime model that gets progressively easier and higher-level 

to debug. Abstraction boundaries exist where they don‘t in 

current FPGAs. Staged programming or functional testing in a 

general-purpose systems makes this easier.  
           We need to develop a common set of concepts, 

principles and models for application execution on 

reconfigurable computing platforms to allow collaboration 

between universities and companies and to provide a solid 

framework to build new innovations and applications. This 

kind of eco-system has been sadly lacking for reconfigurable 

systems.  
 

It is encouraging that cloud computing is driven by fine-

grained charging for the computation resources used. 

Reconfigurable FPGAs driven down the cost of many types of 

computation commonly found on the cloud, and thus a 

community-driven deployment of a cloud setup with rentable 

hardware would provide a focal point to ―fill in the blanks‖ 

for reconfigurable FPGA computing in the cloud.  
It is not clear that these goals can be achieved by a 

collection of parallel independent university and industry 

projects. What is needed is a coordinated research program 

involving members of the reconfigurable computing com-

munity working with each other and researchers in cloud 

computing to define a new vision of where we would like to 

go and then set standards etc. to try and achieve that goal. For 

this to happen we will need some kind of wide ranging joint 

research project proposal or standardization effort. 
 

III. CONCLUSION 
 

Reconfigurable computing is at the cusp of rising up from 

being a niche activity accessible to only a small group of 

experts to becoming a mainstream computing fabric used in 

concert with other heterogeneous computing elements like 

GPUs. For this to become a reality we need to combine some 

of the successes in the FPGA-based research with new 

thinking about programming models to create a development 

environment for ‗civilian program-mers‘. This will require 

collaboration between researchers in architecture, CAD tools, 

programming languages and types, run-time system 

development, web services, scripting and orchestration, re-

targetable compilation, instrumentation and monitoring of 

heterogeneous systems, and failure management. Furthermore, 

the requirements of reconfigurable computing in a shared 

cloud service context also places new requirements on CAD 

tools and architectures which are at odds with their current 

requirements. Today FPGA vendors produce architectures for 

use in an embedded context to be programmed by digital 

design engineers.  
Yesterday‘s programmers of reconfigurable systems were 

highly trained digital designers using Verilog. Today we are at 

the cusp of a revolution which will make tomorrow‘s users of 

reconfigurable technology from regular software engineers 

who map their algorithms onto a heterogeneous mixture of 

computing resources to achieve currently un-achievable levels 

of performance, management of energy consumption and the 

execution of scenarios which promise an ever more 

interconnected world. This paper has set out a vision for a 

reconfigurable computing system in the cloud, identified 

important research challenges and promising re-search 

directions and illustrated scenarios that are made possible by 

reconfigurable computing in the cloud. 
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