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Abstract—In this paper, a theoretical method for analyzing 
the stability of the energy supply-demand system under 
the impulsive and switching control is considered. By 
employing the theory of impulsive differential equation, 
several sufficient conditions ensuring the exponential 
stability of the system are obtained. Numerical simulations 
are given to verify the effectiveness of the theoretical 
analysis. 
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I. INTRODUCTION 
Energy supply-demand security is the core of energy 

security, so ensuring energy supply-demand security is not 
only to solve the most important prerequisite for energy 
security, but also has a crucial role for the energy and 
economic development. By analyzing the energy resources 
demand in the eastern regions of China and the energy 
resources development in the western regions of China, Sun 
ect[1] have established a continuous four-dimensional non-
linear differential system to analyze the dynamical behavior of 
the system.  

The study on switching systems as a special hybrid system 
has attracted great attention since 1990s [2]. A switching 
system can be considered as a class of hybrid dynamical 
systems consisting of a family of continuous or discrete time 
subsystems with a logical rule that orchestrates the switching 
between them [3]. Switching among different controllers even 
for a single process can be viewed as a switching system. This 
area of research has many practical applications in fields such 
as applied mathematics, engineering and computer science [4-
7]. Meanwhile, many practical systems in physics, biology, 
engineering, and information science exhibit impulsive 
dynamical behaviors due to abrupt changes at certain instants 
during the dynamical process [8-10]. The impulsive and 
switching control is a widely used control strategy in some 
biological systems particularly such as biological neural 
networks and bursting rhythm models in pathology [11-12].  

Date up to now, there are no reports in present literature on 
impulsive and switching control for energy supply-demand 
system. Inspired by the above discussion, the main purpose of 
this paper is to investigate impulsive and switching control for 
the energy supply-demand system. By using the theory of 
impulsive differential equations, several sufficient conditions 
are obtained to ensure the exponential stability of the system. 
Finally, the numerical example demonstrates the effectiveness 
of the proposed schemes.  

This paper is organized as follows. In Section 2, model 

description is introduced. In Section 3, problem formulation 
and some preliminaries are given. In Section 4, the 
exponential stability of the energy supply-demand system is 
studied and some sufficient conditions is derived. In Section 5, 
a numerical example is given to show the effectiveness of the 
obtained results. Finally, Conclusions are drawn in Section 6. 

II. MODEL DESCRIPTION 
Sun ect[1] have established a continuous four-dimensional 

non-linear differential system to analyze the dynamical 
behavior of the system. The four-dimensional energy supply-
demand system is described by the following: 
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Where ( )x t  is A region’s energy resources demand, ( )y t  is 
B region’s energy resource supply to A region. ( )z t  is the 
energy resource import in A region. ( )u t  is the renewable 
energy resources in A region. ,ia  ,ib  ,ic  ,id  ,M  N  are 
positive constants. When the system’s parameters are chosen 
as follows:   

1 0.09,a  2 0.15,a  1 0.06,b  2 0.082,b  3 0.07,b 

1 0.2,c  2 3 10.5, 0.4, 0.1,c c d   2 0.06,d  3 0.08,d 
1.8,M  1.N   

We can obtain three equilibrium 
points: (0,0,0,0),O 1S (1.75, -1.52, 0, 2.91)  and 

2S (0.8, 0.669, -1.11, 1.33), which are unstable. Let initial 
condition (0.82,0.29,0.48,0.1) and parameters are fixed as 
above, a chaotic attractor is observed. A four-dimensional 
energy resources chaotic attractor is shown  in Fig1. 

 
Fig.1.  A four-dimensional energy resources chaotic 

attractor: 3D view ( )x y z  . 
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III. PROBLEM FORMULATION AND SOME PRELIMINARIES 

Let ( , , , )x y z u    be the equilibrium point of system (1), by 
using the following transformation: 

1 ,x x x   2 ,x y y   3 ,x z z   4 ,x u u   the 
equilibrium point ( , , , )x y z u    can be shifted to the origin: 

( ),x Ax f x                                                               (2) 
where 
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the nonlinear system (2) with the control input can be 
described as 

( ) ( , ),x Ax f x u t x    
where ( , )u t x  is the control input. We can construct a hybrid 
impulsive and switching controller 1 2u u u   for (2) as 
follows: 

       1 1
1
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where 1kB  and 2kB  are 4 4 constant matrices, ( )  is the 
Dirac impulse. And ( ) 1kl t   as 1 ,k kt t t    
otherwise ( ) 0kl t  with discontinuity points, 1 2 ,kt t t      
lim ,kk

t


   0 0t   is the initial time. 

From (3), 1 1( ) ( ),ku t B x t 1[ , ),k kt t t  1, 2,...,k   this implies 
that the controller 1( )u t  switches its values at every instant 

,kt  and without loss of generality, it is assumed that 

0
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where 0h   is sufficiently small. As 0 ,h   this reduces to 

2( ) ( ) ( ) ( )
k kk k kx t x t x t B x t       , where 

0
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This implies that the controller 2 ( )u t  has the effect of 

suddenly changing the state of (2) at the points .kt  Therefore, 

2 ( )u t  is an impulsive controller, and 1( )u t  is a switching 
controller. 
Accordingly, with the hybrid impulsive and switching control 
(3), the nonlinear system of (2) becomes a nonlinear hybrid 
impulsive and switching system 
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We can rewrite (4) in the form of 

          
1
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Where 1 .
ki kA A B  The switching 

signal  : 1, 2,.... ,R m    which is represented 

by ki according to  1[ , ) 1, 2,.... ,k k kt t i m    is a piecewise 
constant function. Obviously, system (5) has m  different 
modes. 
Assumption 1. Considering the actual meaning of model (1), 

( ),x t  ( ),y t  ( ),z t  ( )u t are bounded, so let   Tx x L , where L  
is positive constant, 1 2 3 4[ , , , ]Tx x x x x . 
Lemma 1. If n nP R   is a symmetric and positive definite 
matrix, n nQ R   is asymmetric matrix, then 

1 1
min max( ) ( ) ,T T TP Q x Px x Qx P Q x Px     .nx R  
 

IV. MAIN RESULTS 
Theorem. Assume that Assumption 1 holds, there exist 
symmetric and positive definite matrices ,ikP  0   is a 
constant, and the nonlinear impulsive and switching system (5) 
satisfies 
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 max ,    min  donate the maximum and minimum 
eigenvalues of the matrix, respectively. Then the origin of the 
nonlinear impulsive and switching system (5) is exponentially 
stable. 
Proof. Construct the switched Lyapunov function in the form 
of 

,
k k

T
i iV x P x  1, 2,..., .ki m                             (8)                                  

The total derivative of ,
ki

V  with respect to (5), is  
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From assumption 1, it follows that 
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In general, for 1[ , ),k kt t t  1,2,...k   
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 Noticing (6), it follows from (10) that  
          0 0 0 0exp , ,T Tx t x t x t x t t t          0 ,t t  
which implies the origin of the nonlinear impulsive and 
switching system (5) is exponentially stable. 

Remark 1. In inequality (6), 
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Remark 2. When 0lim ( , ) ,
t

t t


   implies the origin of the 

nonlinear impulsive and switching system (5) is 
asymptotically stable. 

 

V. NUMERICAL SIMULATIONS 
Example. We prove that the equilibrium point 

1S (1.75, -1.52, 0, 2.91)  of the system (1) is stable under the 
impulsive and switching control.  
Let 1 ,x x x   2 ,x y y   3 ,x z z   4 ,x u u   then 
we can rewrite (1) as  

( ),x Ax f x                                                              (11)  
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Let {1,1,1,1}
ki

P diag , which is symmetric and positive 
definite, it leads to 1.    

By calculating, we have    max 2 2 1,T
k kI B I B       then 

let 1,k   it implies that  
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By letting    0 0, 3 ,t t t t     3,   we have  
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From Theorem, the origin of the nonlinear impulsive and 
switching system (12) is exponentially stable, i.e. the 
equilibrium point 1S (1.75, -1.52, 0, 2.91)  of (1) is 
exponentially stable. 

 
Fig2 The time evolution of the  system (12). 

Choosing the values of , , , , ,i i i ia b c d M N are the same as the 
values in Section 2, the initial states of the controlled system 
(14) are selected as (1, 0.4, 2, 0.5) , and the behaviors of the 
states 1 2 3 4( , , , )x x x x of the controlled chaotic system (14) with 
time are displayed in Fig. 2. 

VI. CONCLUSIONS 
In this paper, we have investigated the exponential stability 

of the four-dimensional energy resources supply-demand 
system under the impulsive and switching control. Based on 
the theory of impulsive, some sufficient conditions have been 
presented to guarantee the exponential stability. Finally, the 
example with its simulation has been given to demonstrate the 
effectiveness of the theory results. 
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