
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8– August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2501

Computational Grid System Load Balancing Using an Efficient
Scheduling Technique

Prakash Kumar#1, Pradeep Kumar#2, Vikas Kumar*3
1,2Department of CSE, NIET, MTU University, Noida, India

 3Linux Administrator, Eurus Internetworks Pvt. Ltd, Delhi, India

Abstract—Grid computing is the collection of computer
resources from various locations to achieve a common goal.
Grid computing is a type of parallel system which enables
the dynamically selection, aggregation and distribution of
geologically resources at run time depending on their user
quality of self service requirement, availability, performance,
cost, capability. Load balancing is very effective technique to
reduce response time and to improve resources utilization,
exploiting through proper distribution of the application.
Assuming homogeneous set of nodes linked with
homogeneous and fast networks, various load balancing
algorithms were developed. Analyzing the past results and to
improve the performance and throughput, proposed efficient
algorithms with better scheduling policies.

Keywords—Grid computing, Load balancing, Scheduling,
Cluster, Throughput, Conservative Backfilling algorithm,
GAP Search.

I. INTRODUCTION
 A distributed computer system is considered to be a
collection of autonomous computers or nodes, connected by a
communication network and located at possibly different sites.
Grids enable the selection, aggregation, sharing of a wide
variety of resources including storage systems,
supercomputers, data sources, and specialized devices that are
geographically distributed and owned by different
organizations for solving data intensive problems and large-
scale computational problems in engineering, science.
Processing power, resources are much larger than the
traditional node distributed computing environment
computing nodes, where each computing resources according
to the system's scheduling policy of the tasks assigned to their
scheduler and implementation. Resource management and
scheduling is the strongest key grid services, but to achieve
scheduling and efficient grid resource management, load
balancing and task scheduling is one of the key issues that
must be addressed. The technique of load balancing is to
distribute workload across two or more computing nodes, in
order to get maximum throughput, optimal resource utilization,
minimize response time, and avoid overload. Two main
aspects that have to be considered in implementing any load
balancing algorithms are scalability and adaptability.
Resource or task assignment is an important issue in grid
computing systems, which provides a better exploitation of

the system parallelism and improves its performance. Many
applications can benefit from the Grid infrastructure,
including data exploration, collaborative engineering, high-
throughput computing, and in fact distributed supercomputing.
Resources in grid environment are geographically distributed
in a large scale way and time to time changes resource
performance.Workload and resource management are two
essential functions provided at the service level of the Grid
software. A grid based distributed system can utilize the
computational resources efficiently by allowing multiple
independent jobs to run over a network of heterogeneous
clusters. In this paper, we propose load balancing algorithm
that can handle heterogeneous grid sites. The proposed
algorithm will balance the load in the grid based on the queue
length of resource and transfer the job to resource having
minimum queue length. The proposed algorithm will be
implemented using Grid simulator toolkit using net beans IDE
[2].

II. PREVIOUS WORK
The structure of the Grid comprises characteristics of loosely
coupled as well as tightly coupled systems; homogeneous as
well as heterogeneous systems. Load balancing strategies aim
to adapt the load optimally to the environment and they
mainly consider the application running on a parallel,
homogeneous system [3]. An efficient load balancing
algorithm namely Sender Initiated load balancing (SI-LB) for
grid has been presented where the availability of resources
and jobs are dynamic. Through simulation experiments, it is
seen that the SI-LB algorithm provides shorter response time,
enhances the resource utilization and balances the load in an
effective manner [1]. Some work addresses the problem of
scheduling and load balancing in a grid architecture where
computational resources are dispersed in different
administrative domains or clusters which are connected to the
grid scheduler by means of heterogeneous communication
bandwidths is considered [11]. There are many researchers
worked with load balancing approaches and uses different
scheduling policies to improve the throughput and minimize
the response time.

III. GRID MODEL
Grid model basically describes three different associative
levels as: Level 0, which is acting as a Grid manager; Level 1,
which is acting as cluster manager; Level 2, which is acting as
processing elements. Grid manager duty is to scheduling tasks

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8– August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2502

to balance the workloads [7].Particular Gird model is shown
in the figure 1 and describing its Levels as follows:
Level 0: At this level, we find the clusters are associated
within a particular Grid. Grid level is basically responsible for:
maintaining the clusters and feedback from its associated
processing elements.

Figure 1: Grid computational model

Level 1: Each cluster manager of this level is associated with a
physical cluster of the Grid. In our load balancing strategy, this
manager is responsible for: sending the load balancing
decisions to the worker nodes which they manage for
execution; initiating a global load balancing, which we will
call inter-clusters load balancing; deciding to start a local load
balancing, which we will call intra-cluster load balancing;
estimating the workload of associated cluster and diffusing this
information to other cluster managers; maintaining the
workload information related to each one of its worker nodes.
Level 2: At this level, we find the worker nodes of a Grid
linked to their respective clusters. Each node at this level is
responsible for: sending this information to its cluster manager;
maintaining its workload information; performing the load
balancing decided by its cluster manager [10, 14]. A grid
manager which is present in the grid calculates the available
capacity of each supernode. The schematic structure of cluster
formation is shown in figure 2. Considering figure 2, the
arrival of nodes and the application of decentralized load
balancing algorithm with some cluster formation constraints
lead to the formation of clusters [5].

Figure 2: Cluster formation structure

According to cluster formation structure, when a task arrives,
it is assigned to exactly one cluster for processing. A timer is
assigned to each task, if the task is not processed within the
assigned time, then the task is given highest priority for
execution and when a fault occurs, each cluster has a master
which takes the decision of load balancing [5]. To improve the
performance of clusters in a grid, workload is balanced among
the clusters. A workload is defined to be a job which can be an
independent program or a partitioned module of a parallel
program.

IV. LOAD BALANCING APPROACHES

Algorithms on basis of condition of system can be categorized
as static, dynamic, adaptive algorithms. In static algorithms,
scheduling is based on a policy that takes place as default.
Condition of the system in every scheduling will be specified
and based on this, scheduling takes place and no more
scheduling will take place until the work is done. A dynamic
algorithm adapts its decision with the system and in processing
duties with changing system condition with tuned system
allocated to grid may change. Such load balancing on basis of
the present condition system makes decision and quickly
adapts with workload fluctuations. Adaptive algorithm is a
special type of dynamic algorithms which in spite of normal
dynamic algorithms polices and scheduling where its
parameters are constant. This algorithm change its parameters
and scheduling policy on basis of general [6]. Dynamic
algorithm is classified into two load balancing algorithm that
is centralized load balancing and decentralized algorithm. The
centralized approach is a simple approach and is beneficial
when the communication cost is less significant and it is
mainly used for a small size grid. The decentralized algorithms
are scalable and have better fault tolerance. Although the
decentralized approach is suitable for dynamic heterogeneous
resources it increases the communication overhead to a large
extent. The decentralized approach is preferred because
elements of the network may vary in capacity or number
during run time. The centralized and decentralized load
balancing algorithms can be further classified into sender-
initiated algorithms, receiver-initiated algorithms and
symmetrically initiated algorithms according to their location
policies. Various kinds of location methods are sender initiated,
receiver initiated and symmetrically initiated algorithm.
Sender initiated algorithms let the heavily loaded nodes take
the initiative to request the lightly loaded nodes to receive the
jobs; while receiver initiated algorithms let the lightly loaded
nodes invite heavily loaded nodes to send their jobs.
Symmetrically initiated algorithms combine the advantages of
both sender and receiver initiated algorithms [6, 7].

V. PROBLEM STATEMENT
A typical distributed system will have a number of

interconnected resources which can work independently or in
cooperation with each other. Each resource has owner
workload, which represents an amount of work to be
performed and every one may have a different processing
capability. To minimize the time needed to perform all tasks,

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8– August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2503

the workload has to be evenly distributed over all resources
based on their processing speed. The essential objective of a
load balancing consists primarily in optimizing the average
response time of applications, which often means maintaining
the workload proportionally equivalent on the whole resources
of a system. Although the centralized approach is used
currently, it limits the scalability of the grid by becoming a
bottle neck and also failure of central controller can cause the
entire system to fail [1]. If jobs distributed in girds unevenly,
then potential would force jobs to be moved from overloaded
nodes to lightly loaded nodes and grids would converge to the
balanced state eventually [8]. Task assignment problem is a
combinatorial optimization problem which consists of
assigning a given computer program formed by a number of
tasks to a number of processors/machine and this is subject to
a set of constraints, and in such a way a given cost function to
be minimized [12]. An experimental result shows the fewer
throughputs, higher waiting time and less cluster utilization.

VI. PROPOSED METHODOLOGY

Grid computing allows a cluster of loosely coupled
computers to perform large tasks or tasks that generally
consume more resources and time than is feasible for a single
system [9]. Grid architecture identifies the fundamental
system components, specifies purpose and function of these
components, and indicates how these components interact
with each other. Grid architecture is protocol architecture,
with protocols defining the basic mechanisms by users and
resources negotiate, establish, manage and exploit sharing
relationships. Grid architecture is also a services standards
based open architecture that facilitates extensibility,
interoperability, portability and code sharing. A heterogeneous
grid environment by using various resource specifications was
built, which proposes the method of creating a user job and
different types of heterogeneous resources. The resources
differ in their operating system type, CPU speed, RAM
memory [11].

Figure 3: Topology of the Grid

Grid manager calculates the minimum communication cost of
sending or receiving jobs to/from remote clusters based on the
information collected in the last exchange interval. Master of
each cluster also runs the Grid manager as shown in figure 3
[1]. We have two techniques namely queue-based (shown in

figure 4) and schedule-based techniques (shown in figure 5).
Basically we have applied two efficient algorithms with
respect to getting better throughput and less response time.
The algorithms are namely Consecutive Backfilling algorithm
and Gap search algorithm. Conservative algorithm tried to
maximize the utilization at every scheduling step, thereby
reducing the mean response time. The main task of this
algorithm is to select jobs from the waiting queue and assign
available processors to them to maximize
utilization.

Figure 4: Queue based solution technique

Gap search select the first gap in the scheduler to be filling by
a new job have been introduced. Fill the first gap with
possible jobs that can fix in, biggest gap search for the biggest
holes in the queue and match them with any jobs that can fix
in. If the hole or gap does not match the jobs or too small for
the job, the system has to search again [15, 16].

Figure 5: Schedule based solution technique

The scheduler is concerned mainly with: Throughput,

which is the total number of processes that complete their
execution per time unit; Turnaround time , which is the total
time between submission of a process and its completion;
Response, which is the amount of time it takes from when a
request was submitted until the first response is produced. A
Computational Grid is a software and hardware infrastructure
that provides consistent, dependable, inexpensive and
pervasive access to high-end computational capabilities [13].

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 8– August 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2504

VII. EXPERIMENTAL RESULTS
For analysing experimental results, we used GridSim toolkit,
which is java-based discrete-event Grid simulation toolkit.
The toolkit focuses on modelling and simulation of
heterogeneous grid resources, application models and users. It
can also be used for the modelling and simulation of
application scheduling on various classes of parallel and
distributed computing systems such as grids, clusters [4, 11].

Figure 6: Comparison between previous algorithm and
proposed algorithm with respect to cluster usage per day

Experimental result shows the comparison between previous
algorithm and proposed algorithm with respect to cluster uses
per day and number of waiting/running jobs per day. Figure 6
show the result of proposed algorithm is better than the past.
Figure 7 shows the waiting jobs using the proposed algorithm
are improved.

Figure 7: Comparison between previous algorithm and

proposed algorithm with respect to running jobs per day

VIII. CONCLUSIONS AND FUTURE SCOPE
Testing and evaluating the performance of our model, we
developed our strategy under the GridSim simulator written in
Java. We have randomly generated clusters with different
characteristics and a set of dependent tasks. The experimental

results are encouraging since we can significantly reduce the
average response and waiting time. The simulation results
show that with increase in the number of super nodes and the
execution time is less as compared to existing algorithm. We
also assume that cluster utilization is effective, throughput is
better and response time is better than past algorithm. In the
future we want to improve the proposed strategy by a better
scheduling approaches using networking concepts or
integrating the multi-agent systems.

REFERENCES
[1] Jasma Balasangameshwara, Nedunchezhian Raju,” A Symmetric-

Initiated Load Balancing Model for Computational Grid Systems”
International Conference on Network Communication and Computer,
IEEE, 2011.

[2] Manpreet Singh, Sandeep Kumar Goyal, Vishal Gupta,"An Adaptive
Load Balancing Algorithm for Computational Grid", JET, Vol. 1, Issue
2, June 2013.

[3] Jagdish Chandra Patni, Dr. M.S. Aswal, Om Prakash Pal, Ashish
Gupta,"Load balancing strategies for Grid Computing",IEEE,2011.

[4] Jasma Balasangameshwara, Nedunchezhian Raju, “A hybrid policy for
fault tolerant load balancing in grid computing environments”,
Elsevier, Journal of Network and Computer Applications, 35, Page no. ,
412-422, 2012.

[5] Itishree Behera, Chita Ranjan Tripathy, Satya Prakash Sahoo,” An
Efficient Method of Load Balancing With Fault Tolerance for Mobile
Grid”, IJCST ,Vol. 3, Issue 3, July - Sept 2012.

[6] Mohsen Moradi, Mashaala Abbasi Dezfuli, Mohammad Hasan Safavi,
"A New Time Optimizing Probabilistic Load Balancing Algorithm in
Grid Computing", IEEE, 2010.

[7] Mehdi Nikkhah, Raheleh Safaeipour, Mohsen Moradi ,"Investigating
of Probabilistic Load Balancing Algorithms in Grid Computing",
International Conference on Education Technology and Computer,
IEEE, 2010

[8] Jie Hu, Raymond Klefstad, "Decentralized Load Balancing on
Unstructured Peer-2-Peer Computing Grids", Network Computing and
Applications, IEEE, 2006.

[9] V. Prasanna Venkatesh, V. Sugavanan,"High Performance Grid
Computing and Security through Load Balancing", International
Conference on Computer Science and technology, IEEE, 2009.

[10] N. Malarvizhi, Dr. V. Rhymend Uthariaraj, "Hierarchical Load
Balancing Scheme for Computational Intensive Jobs in Grid
Computing Environment", ICAC, IEEE, 2009.

[11] Dinesh S. Gawande, Rajesh C. Dharmik, Chanda Panse, "A Load
Balancing in Grid Environment", IJERA, Vol. 2, Issue 2, March 2012.

[12] Meddeber Meriem, Yagoubi Belabbas, "Tasks Assignment for Grid
Computing", International Journal of Web and Grid Services, ACM,
Vol. 7 Issue 4, Pages 427-443, January 2011.

[13] Dj Tayeb Lilia, Halima Si Moussa, "Load Balancing in Grid
Computing", Asian Journal of Information Technology, Medwell, Vol.
5, Issue 10, Pages 2095-1103, October 2006.

[14] Belabbus Yagoubi, Meriem Meddeber, "Distributed Load Balancing
Model for Grid Computing", ARIMA Journal, Vol. 12, Pages 43-60,
September 2010.

[15] Zafril Rizal M Azi, Kamalrulnizam Abu Bakar, Mohd Shahir Shamsir,
"Scheduling Grid Jobs Using Priority Rule Algorithms and Gap Filling
Techniques", International Journal of Advanced Science and
technology, Vol. 37, December 2011.

[16] Hasasn Rajaei, Mohammad Dadfar, "Comparison of backfilling
Algorithms for Job Scheduling in Distributed Memory Parallel System",
American Society for Engineering Education, 2006.

