
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 7–July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2366

Averting Buffer Overflow Attack in Networking OS using
– BOAT Controller

Vadivel Murugan.P M.Alagarsamy
Research Scholar Associate Professor
Department of Computer Center Department of Computer Center
Madurai Kamaraj University Madurai Kamaraj University

Abstract:
Today’s Networking Operating System Server

software is under continuous scrutiny and attack, whether
for fun or for profit. Networking OS Software
vulnerabilities that allow the injection and execution of
malicious code in persistent Internet connected systems
pose serious threats to system security. In a common type
of attack, an inimical party induces a software buffer
overflow in a prone to the computing devices in order to
corrupt a procedure to return addresses and transfer
controls to the malicious code. This buffer overflow
attacks are often engaged to recruit unaware hosts into
Distributed Denial of Service (DDoS) attack networks,
which ultimately promote overwhelming buffer overflow
attack against victim networks or machines. In spite of
current security software countermeasures that they seek
to prevent buffer overflow exploits, many systems are in
remain vulnerable. The BOAT controller tool is detect
and prevent the buffer overflow in networking OS and
strongly control the task utilization.

Keywords: Buffer overflows attack, BOAT controller
tool, Memory allocation, Stack based buffer overflow,
Heap based buffer overflow

I INTRODUCTION

1.1 Background analysis and Problem Statement

A buffer overflow attack, it's an easy to make
Waffle File puts it; buffer overflows are the source of
“most stealthy data dependent bugs". Until now buffer
overflows are more than just a source of thwarting for
programmers. Certainly, they can create serious security
holes, leading vulnerabilities which can be exploited to
achieve a Denial of Service or in some cases, to get a
gain access and increased privileges on systems.

The Internet Worm, program code written and
released by Robert T. Morris in 1988, deployed the first
known buffer overflow attack. The Worm, which
infected thousands of computer systems on the Internet,
exploited a buffer overflow attack.

Even before the Worm's release, buffer
overflow attacks may have known in some circles there
is unreliable evidence of buffer overflow attacks dating
back to the 1960’s [3]. Even so, prior to 1997, buffer
overflow vulnerabilities were only occasionally

discovered and never in such numbers as to attract too
much attention. In recent years, however, buffer overflow
attack have become the most commonly discovered class
of vulnerability, and unfortunately, the most widely
exploited. In fact of the twenty forth (24) of the forty
forth (44) CERT advisories issued since January 1, 1997,
have involved some types of buffer overflow attack [10].
Buffer overflow vulnerabilities represent a security
problem of computer users, whether they are a
programmers, system administrators or users. The Code
Red worm creates rigorous problems that buffer overflow
vulnerabilities still cause today. Code Red and its
variants, which pricked companies over 2001, took
advantage of a buffer overflow problem in Microsoft
windows 2000, Internet Information Server. The total
economic cost of these worms was assessed at $2.6
billion by Computer Economics [13].

According to US-CERT [4], there were tens of
new Buffer overflow attacks appeared each month in
2008. A control-hijacking buffer overflow attack is
launched through the overwriting control sensitive data
(such as return address, function pointers, GOT entries
and the jump buffer) with a new address, called a
deviation address, to transfer the execution flow of a
program into the code injected are taken by attackers.
Stack smashing Buffer overflow attacks and return-into-
libc [1], [17], are two most common control-hijacking
buffer overflow attack types, especially the former [14].

II BUFFER OVERFLOW ATTACK

2.1 Buffer Overflow Attack methods
The analysis of intrusions in this work concerns a subset
of all violations of security policies that would constitute
a security intrusion according to definitions in, for
example, the Internet Security Glossary [16]. In our
context and intrusion or a successful attack aims to
change the flow of control, letting the attacker execute
arbitrary code. It consider as class of vulnerabilities the
worst possible since “arbitrary code” often means
starting a new shell. This shell will have the similar
access rights to the system as the process attacked. If the
process had root access, so the attacker in the new shell,
leaving the whole system opens for any kind of
manipulation.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 7–July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2367

Figure 1: In 2010, the IDS system logged 1,311,156,130 number of network attacks. That number was just 220 million in 2009.

The Top 20 malicious programs responsible for network attacks
Table 2: These statistics are based on the detection verdicts of the web antivirus module, and were provided by users of Kaspersky Lab
products who gave their consent to transfer their statistical data [11].

2.2 Memory Allocation-Stack Based Buffer Overflows
The stack is an area of reserved virtual memory used by
applications software. It is an operating system’s method of
allocating memory. The programmer is not required to give any
special instructions in code to expand the memory. However, the
operating system performs this task thro guard pages

automatically. The given code would store the character array
“var” on the stack.
Example:

char var[]="Some string stored on the stack
memory";

The stack operates in similar to a memory. The information is
always pushed onto (added) and popped off (removed) from the
top position of the stack. The stack is a method of Last In First
Out (LIFO) data structure. Pushing a data item onto a stack causes
the current top of the stack to be decremented by four bytes (4B)
before the item is placed on the stack. When any information is
added to the stack, all the previous data is moved downwards and
the new data sits at the top of the stack. Multiple bytes of data can
be popped or pushed onto the stack at any given time. Since the
current top of the stack is decremented before pushing any item
on top of the stack, the stack grows downwards in memory.
A stack frame is a data structure format that is created during the
entry into a subroutine procedure (in the terms of C /C++, it’s the
creation of a functions). The objective of the stack frame is to
keep the parameters of the base procedure as is and to pass
arguments to the subroutine procedures. The current location of
the stack pointer can be accessed at any given time by accessing
the stack pointer register (ESP).The current base of a function can
be accessed by using the EBP register which is called the Base
Pointer or Frame Pointer and the current location of executions
can be accessed by accessing the instruction pointer register
(EIP).

2.3 Memory Allocation-Heap Based Buffer Overflows

R
an

ki
ng

Name of the attack

No. of
unique

attacks* %
1 Win.NETAPI.buffer-overflow.exploit 55,71,26,500 42.49%
2 DoS.Generic.SYNFlood 40,04,91,518 30.54%
3 Win.MSSQL.worm.Helkern 26,24,43,478 20.02%
4 Scan.Generic.UDP 4,53,43,780 3.46%
5 Win.DCOM.exploit 1,41,34,307 1.08%
6 Generic.TCP.Flags.Bad.Combine.attack 1,06,31,023 0.81%
7 Scan.Generic.TCP 52,38,178 0.40%
8 Win.LSASS.exploit 50,89,038 0.39%
9 Win.LSASS.ASN1-kill-bill.exploit 32,56,429 0.25%
10 DoS.Generic.ICMPFlood 23,41,724 0.18%

11
 DoS.Win.IGMP.Host-Membership-
Query.exploit 16,41,578 0.13%

12
Win.HTTPD.GET.buffer-
overflow.exploit 13,99,613 0.11%

13 Win.PnP.exploit 5,79,249 0.04%

14
Win.EasyAddressWebServer.format-
string.exploit 3,84,278 0.03%

15 Win.SMB.CVE-2009-3103.exploit 2,36,122 0.02%
16 Win.WINS.heap-overflow.exploit 1,90,272 0.01%
17 DoS.Win.ICMP.BadCheckSum 1,01,063 0.01%
18 Generic.FTPD.format-string.attack 98,239 0.01%
19 Win.CVE-2010-2729.a.exploit 71,671 0.01%
20 Win.MSFP2000SE.exploit 44,674 0.00%

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 45.00%

Win.NETAPI.buffer-overflow.exploit
 Win.MSSQL.worm.Helkern

 Win.DCOM.exploit
 Scan.Generic.TCP

 Win.LSASS.ASN1-kill-bill.exploit
 DoS.Win.IGMP.Host-Membership-Query.exploit

Win.PnP.exploit
 Win.SMB.CVE-2009-3103.exploit

 DoS.Win.ICMP.BadCheckSum
 Win.CVE-2010-2729.a.exploit

%

 %

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 7–July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2368

Heap, similar to stack, is a region of virtual memory used by the
applications. In every application software has a default heap
space. However, different stack, private heap space can be created
by programmers via special instructions such as “new ()” or
“malloc ()”and freed by using “delete ()” or “free ()”. Heap
procedures are called when

an application doesn’t know the sizes of (or the number of)
objects needed in advance, or when an object is very large to fit
onto the stack.

Example:
OBJECT * var = NULL;
var = malloc (sizeof (OBJECT));

The operating system Heap Manager operates above the Memory
Manager and is responsible for providing functions which
allocates or deallocates portions of memory. Every application
starts out with a default of 1MB (0x100000) of reserved heap size
(view output from dumpbin that follows) and 4kb (0x1000)
committed if the table does not indicate the allocation size. Heap
grows over time and it doesn’t have to be contiguous in memory.

Figure 2: High-Level Memory Layout

2.4 Heap layout

2 Bytes Size of this block / 8

Control
block

2 Bytes Size of the previous block
/ 8

4 Bytes Flags (8 bit/byte)

4 Bytes (EAX) DATA if in use, else
previous free block pointer

4 Bytes(ECX) DATA if in use, else next
free block pointer

Figure 3: Windows Frame Layout

C:\WINDOWS\system32>dumpbin /headers kernel32.dll
<Deleted for brevity>
100000 size of heap reserve (1 MB)
1000 size of heap commit (4k)
<Deleted for brevity>

2.5 Heap Structure

Each heap block starts and maintains a data structure to
keep track of the memory blocks that are free and the ones that
are in use (see Figure 3). Heap allocation has a minimum size of
eight bytes, and an additional overhead of eight bytes (heap
control block). The heap control block among other things also
contains pointers to the next free block. As and when the memory
is freed or allocated, these pointers are updated.

III PROPOSED METHODS

3.1 Detecting Techniques

The systemic approach: the programming technology and
programmer mistakes or cracker that opens the door for repeated
attacks on critical infrastructure software.

It has examined the characteristics of numerous buffer overflow
attacks, the main reasons for their attractiveness, and the
effectiveness and costs of several defenses against them. Until
recently the attackers seemed to have the traditional defenses
appeared largely impotent to stop these attacks. The recent
appearances of effective defenses that break some of these
difficulties give reason for hopefulness that finally the defenders
might have a chance to gain against this type of attack.

If no tools can resolve absolutely the problem of buffer overflow,
but they can reduce the probability of stack smashing attacks.
However, code analysis (writing a secure code) is still the best
solution to these attacks. If the buffer overflow occurred the
BOAT controller tool is helpful to prevent and detect the
vulnerability. The application software is control the networking
operating system function it takes over the task manager control
from the place of (\Windows\system32\taskmgr.exe). In operating
system the task manager is the application to control the memory
allocated by the memory management system.

In task manager the process of several system and application
software files are listed in hierarchy, if some application
consumes the memory from RAM suddenly, that suspect program
is detected by the BOAT controller application software. The
application software also do the job of monitoring the process ID,
user name and how much KB of memory consumed by the
attacking program, every five seconds it refresh the memory and
again monitoring the task manager.

IV CONTROL MEASURES

4.1 Buffer Overflow Attack Countermeasures
If the application BOAT controller tool is control the task
manager if the memory overrides the program passing an alert to
the administrator. If the administrator allocates a memory
manually the suspected program may consume the more memory
should control by the program. It secures your server from the
buffer overflow crash.Select the suspected process with name or
process id with memory size, enter the memory limit of value
given by the administrator, if the program try to overflow the
memory size in particular time the BOAT controller tool control
the suspected program.

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 7–July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2369

Figure 4: Running program-task manager is control from the Dos
Prompt

Figure 5: The application executed is ready to control the
overflow task

Figure 6: The buffer memory over flow program–selected task
will controlled by the program

V CONCLUSION
In this paper, we propose a solution, for a buffer overflow attack
the notorious security problem. BOAT controller tool is an
accurate adaptive detection mechanism that can recognize and
block stack, heap smashing Hence, it can prevent them from
damaging the user mode stack from attack. BOAT controller tool
is a networking OS-based solution; thus, it does not need to
modify the source code of any application programs. BOAT
controller tool, prevent the malicious code which consume more
memory and secure your system from the vulnerable attack.

VI REFERENCES

1. Aleph One, “Smashing the stack for fun and profit,”
Phrack Magazine, Vol. 7, 1996,
http://www.phrack.org/issues.html? issue=49&id=14.,
2. C. Cowan, C. Pu, D. Maier, J.
Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang,
and H. Hinton. Stack-

 Guard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In
 Proceedings of the 7th USENIX Security Conference, pages 63-
78, San Antonio,
Texas, January 1998.

3. Crispin Cowan, Posting to Bugtraq Mailing List,
http://geek-girl.com/bugtraq/1999_1/0481.html
4. CERT, http://www.us-cert.gov/.
5. CERT. CERT/CC statistics.
http://www.cert.org/stats/cert stats.html, Feb. 2005.
6. C. Cowan. Software security for open-source systems.
IEEE Security & Privacy, 1(1):38–45, 2003.
7. D. Larochelle and D. Evans. Statically detecting likely
buffer overflow vulnerabilities. In Proceedings of the 2001
USENIX Security Symposium, Washington DC, USA, August
2001.
8. E. Rescorla. Is finding security holes a good idea? IEEE
Security & Privacy, 3(1):14–19, 2005.
9. H. Etoh. GCC extension for protecting applications
from stack-smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/, June 2000.
10. http://www.cert.org/advisories.
11. http:// www.securelist.com/en/analysis Kaspersky
Security Bulletin 2010 /Statistics, 2010

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 7–July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2370

12. I. Simon. A comparative analysis of methods of defense
against buffer overflow attacks.
http://www.mcs.csuhayward.edu/˜simon/security/boflo.html,
January 2001.
13. J. McCarthy, “Take Two Aspirin, and Patch That
System – Now,” SecurityWatch, August 31, 2001.
14. Li-Han Chen, Fu-Hau Hsu, Cheng-Hsien Huang, Chih-
Wen Ou,Chia-Jun Lin And Szu-Chi Liu “A Robust Kernel-
Based Solution to Control-Hijacking Buffer Overflow
Attacks”Journal Of Information Science And Engineering 27,
869-890 (2011).
15. NIST. ICAT vulnerability
statistics.http://icat.nist.gov/icat.cfm?function=statistics,
Feb.2005.
16. R. W. Shirey. Request for comments: 2828, Internet
security glossary. http://www.faqs.org/rfcs/rfc2828.html, May
2000.

17. SolarDesigner, “Non-executable user stack,”
http://www.openwall.com/linux.///, J. Pincus and B. Baker,
“Beyond stack smashing: recent advances in exploiting buffer
overruns,” in Proceedings of IEEE Symposium on Security and
Privacy, 2004,pp. 20-27.
18. T. cker Chiueh and F.-H. Hsu. RAD: A compile-time
solution to buffer overflows attacks. In Proceedings of the 21th
International Conference on Distributed Computing Systems
(ICDCS), Phoenix, Arizona, USA, April 2001.
19. The SANS Institute, “The SANS/FBI Twenty Most
Critical Internet Security Vulnerabilities,”
http://www.sans.org/top20/, October 2002.
20. Vendicator. Stack Shield technical info file v0.7. http:
//www.angelfire.com/sk/stackshield/, January 2001.
21. Zitser. Securing software: An evaluation of static
source code analyzers. Master’s thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering and
Computer Science, Aug. 2003.

