
International Journal of Computer Trends and Technology (IJCTT) – Volume 4 Issue 7 - July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2159

Foundation for Frequent Pattern Mining Algorithms’
Implementation

Prof. Paresh Tanna#1, Dr. Yogesh Ghodasara*2
#1School of Engineering – MCA Department, RK. University, Rajkot, Gujarat, India

*2College of Information Tech., Anand Agriculture University, Anand, Gujarat, India

Abstract— As with the development of the IT technologies,
the amount of accumulated data is also increasing. Thus
the role of data mining comes into picture. Association
rule mining becomes one of the significant responsibilities
of descriptive technique which can be defined as
discovering meaningful patterns from large collection of
data. The frequent pattern mining algorithms determine
the frequent patterns from a database. Mining frequent
itemset is very fundamental part of association rule
mining. Many algorithms have been proposed from last
many decades including majors are Apriori, Direct
Hashing and Pruning, FP-Growth, ECLAT etc. The aim of
this study is to analyze the existing techniques for mining
frequent patterns and evaluate the performance of them
by comparing Apriori and DHP algorithms in terms of
candidate generation, database and transaction pruning.
This creates a foundation to develop newer algorithm for
frequent pattern mining.

Keywords— Association rule, Frequent pattern mining,
Apriori, DHP, Foundation Implementation Study

I. INTRODUCTION
Automated data collection tools and mature database

technology lead to tremendous amounts of data accumulated
and/or to be analysed in databases, data warehouses, and other
information repositories [7]. We are drowning in data, but
starving for knowledge! What is the solution for this problem?
I think its Data Mining - Mining interesting knowledge (rules,
regularities, patterns, constraints) from data in large databases.
Data mining refers to the use of sophisticated data analysis
tools to discover previously unknown, valid patterns and
relationships in large data sets.[1]”

Fig. 1 Data to Information with Data Mining[1]

Fig. 2 Data Mining – A KDD process[1]

Frequent Patterns are patterns (such as itemsets) that
appear in a data set frequently: A set of items, like milk and
bread, that appear frequently together in a transaction dataset
is a frequent itemsets. Frequent pattern mining searches for
recurring relationships in a given data set. Researcher can
focus on frequent patterns mining like Frequent itemsets from
the small and/or from the large amount of data, where the data
are either transactional or relational[7]. So many applications
are there which we can be considered as frequent pattern
applications like Supermarket for product placement & special
promotions, Websearch for which keywords often occur
together in webpages, Health care for frequent sets of
symptoms for a disease, Basically works for all data that can
be represented as a set of examples/objects having certain
properties like patient / symptoms, movies / ratings, web
pages / keywords, basket / products etc. Considering Market
Basket Analysis we can find that Market basket analysis
might tell a retailer that customers often purchase shampoo
and conditioner together, so putting both items on promotion

International Journal of Computer Trends and Technology (IJCTT) – Volume 4 Issue 7 - July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2160

at the same time would not create a significant increase in
profit, while a promotion involving just one of the items
would likely drive sales of the other.

Association rule learning is a popular and well researched
method for discovering interesting relations between variables
in large databases[6]. It is intended to identify strong rules
discovered in databases using different measures of
interestingness. Based on the concept of strong rules[2],
introduced association rules for discovering regularities
between products in large-scale transaction data recorded by
point-of-sale (POS) systems in supermarkets. The volume of
data is increasing dramatically as the data generated by day-
to-day activities. Therefore, mining association rules from
massive amount of data in the database is interested for many
industries which can help in many business decision making
processes, such as cross-marketing, Basket data analysis, and
promotion assortment. The problem of association rule mining
is defined as: Let I = {i1, i2,.....,in} be a set of n binary
attributes called items. Let D = = {t1, t2,.....,tm} be a set of
transactions called the database. Each transaction in D has a
unique transaction ID and contains a subset of the items in I.
A rule is defined as an implication of the form X==>Ywhere
X, Y I and X ∩ Y = θ. The sets of items (for short itemsets)
X and Y are called antecedent (left-hand-side or LHS) and
consequent (right-hand-side or RHS) of the rule respectively.
To illustrate the concepts, we use a small example from the
supermarket domain. The set of items is I = {milk, bread,
butter, beer}. An example rule for the supermarket could be
{butter, bread} ==> {milk} meaning that if butter and bread
are bought, customers also buy milk. In short we summaries
association rule as given: Given database of transactions and
each transaction is a list of items(purchased by a customer in a
visit) then find all rules that correlate the presence of one set
of items with that of another set of item. Example 98% of
people who purchase tires and auto accessories also get
automotive services done[2].

II. FREQUENT PATTERN MINING ALGORITHMS
Hundreds of algorithms have been proposed for

sparse/dense data, many rows/columns, data fits/does not fit in
memory etc. Among these we can filter out most useful
methods which we can categorize them as scalable methods
for mining frequent patterns. Scalable mining methods: Four
major approaches are: Apriori : Fast Algorithms for Mining
Association Rules[2], Direct Hashing and Pruning (DHP) : An
Effective Hash-Based Algorithm for Mining Association
Rules[3], Frequent pattern growth (FP – Growth) : Mining
Frequent Patterns without Candidate Generation: A Frequent-
Pattern Tree Approach[4], Vertical data format approach
(ECLAT): New Algorithms for Fast Discovery of Association
Rules[5]

A. Apriori: A Candidate Generation-and-Test Approach
Apriori is a classic algorithm for frequent itemset mining and
association rule learning over transactional databases [2]. It
proceeds by identifying the frequent individual items in the
database and extending them to larger and larger item sets as

long as those item sets appear sufficiently often in the
database. The frequent item sets determined by Apriori can be
used to determine association rules which highlight general
trends in the database: this has applications in domains such as
market basket analysis.

Apriori is designed to operate on databases containing
transactions (for example, collections of items bought by
customers, or details of a website frequentation). Each
transaction is seen as a set of items (an itemset). Given a
threshold C, the Apriori algorithm identifies the itemsets
which are subsets of at least C transactions in the database.
Apriori uses a "bottom up" approach, where frequent subsets
are extended one item at a time (a step known as candidate
generation), and groups of candidates are tested against the
data. The algorithm terminates when no further successful
extensions are found. Apriori uses breadth-first search and a
Hash tree structure to count candidate item sets efficiently [2].
It generates candidate item sets of length k from item sets of
length k-1. Then it prunes the candidates which have an
infrequent sub pattern. According to the downward closure
lemma, the candidate set contains all frequent k-length item
sets. After that, it scans the transaction database to determine
frequent item sets among the candidates. In short, it finds the
frequent itemsets : the sets of items that have minimum
support and a subset of a frequent itemset must also be a
frequent itemset i.e., if {AB} is a frequent itemset, both {A}
and {B} should be a frequent itemset. Also iteratively find
frequent itemsets with cardinality from 1 to k (k-itemset) with
two step process: Join Step: Ck is generated by joining Lk-

1with itself and Prune Step: Any (k-1)-itemset that is not
frequent cannot be a subset of a frequent k-itemset. Apriori
follows the following method: (i) initially, scan DB once to
get frequent 1-itemset, (ii) generate length (k+1) candidate
itemsets from length k frequent itemsets, (iii) test the
candidates against DB and finally (iv) terminate when no
frequent or candidate set can be generated. We can note down
that any subset of large itemset is large therefore to find large
k-itemset: create candidates by combining large k-1 itemsets,
delete those that contain any subset that is not large. Example
of Generating Candidates Let L3={abc, abd, acd, ace, bcd} the
we can have self-joining: L3*L3 abcd from abc and abd , acde
from acd and ace. Also we can have pruning: Pruning: acde is
removed because ade is not in L3 and C4 will be {abcd}.

Apriori Algorithm Implementation Summary using java
sample code:
Ck: Candidate itemset of size k
Lk : frequent large itemset of size k
find_frequent_itemsets(long m_sup)
{
 int k=1; // Initially k=1
 min_sup = m_sup;
 LinkedList<FrequentItem> L;
 LinkedList<FrequentItem> C=null;
 L = Find_frequent_1_itemsets();
 while(L.size() >= 1)// Line No: 2

International Journal of Computer Trends and Technology (IJCTT) – Volume 4 Issue 7 - July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2161

 {
 C = apriori_gen(L,k); //Generate new k-itemsets
candidates
 C=CandidateSupportCount(C,k); //Find the support of
all the candidates
 if(C.size()<=0)
 break;
 L=FindLargeItemsets(C); // Take only those with
support over minsup
 if(L.size()<=0)
 break;
 k++;
 }
 aps.txtaResult.setText(aps.txtaResult.getText()+outputstr);
 }

//Candidate Generation :
apriori_gen(L,k)
{
 LinkedList<FrequentItem> C = new
LinkedList<FrequentItem>();
 for(int i=0;i<L.size();i++)
 {
 for(int j=i+1; j<L.size();j++)
 {
 if(IsPosibleInter(L.get(i).itemset, L.get(j).itemset, k-1))
 {
 int temp = L.get(j).itemset.lastIndexOf(",")+1;
 FrequentItem c = new

FrequentItem(L.get(i).itemset+","
 + L.get(j).itemset.substring(temp),0);

 if(!Has_Infrequent_Subset(c,L,k))
 C.addLast(c);
 }
 }
 }
 return C;
 }
Considering an example for joining and pruning : Let L3 =
{ {1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {2 3 4} } After joining :
{ {1 2 3 4}, {1 3 4 5} } and After pruning : {1 2 3 4} since {1
4 5} and {3 4 5} are not in L3.

Also Apriori algorithm can be modified to improve its
efficiency (computational complexity) by hashing, removal of
transactions that do not contain frequent itemsets, sampling of
the data, partitioning of the data, and mining frequent itemsets
without generation of candidate itemsets.

B. The DHP Algorithm (Direct Hashing and Pruning) –
Improvement approach towards Apriori

DHP can be used for efficient large itemset generation. It

has two major features: efficient generation for large itemsets
and effective reduction on transaction database. It uses
hashing technique. In particular, for the large 2-itemsets,
where the number of candidate large itemsets generated by

DHP is, in orders of magnitude, smaller than that of by
Apriori method[3]. Thus improving the performance
bottleneck of the whole process. It Uses pruning technique to
reduce the size of the database progressively[6].

Hashing is used to reduce the size of the candidate k-
itemsets, i.e., itemsets that are generated from frequent
itemsets from iteration k-1, Ck, for k>1. For instance, when
scanning D to generate L1 from the candidate 1-temsets in C1,
we can at the same time generate all 2-itemsets for each
transaction, hash (map) them into different buckets of the hash
table structure and increase the corresponding bucket
counts[1]. A 2-itemset, which corresponding bucket count is
below the support threshold, cannot be frequent and thus we
can remove it from the candidate set C2. In this way we reduce
the number of candidate 2-itemsets that must be examined to
obtain L2. It finds the frequent itemsets : the sets of items that
have minimum support - a subset of a frequent itemset must
also be a frequent itemset i.e., if {AB} is a frequent itemset,
both {A} and {B} should be a frequent itemset. DHP uses the
technique due to this which is more powerful than Apriori i.e.
Candidate large 2-itemsets are huge - DHP trims them using
hashing and transaction database is huge that one scan per
iteration is costly - DHP prunes both number of transactions
and number of items in each transaction after each iteration[6].

Hash Table Construction
Consider two items sets, all items are numbered as I1, I2, …In.
For any pair (x, y), has according to Hash function bucket # =
h({x y}) = ((order of x)*10+(order of y)) % 7. Example: Items
= A, B, C, D, E, Order = 1, 2, 3 4, 5, then H({C, E})=
(3*10 + 5)% 7 = 0. Thus, {C, E} belong to bucket 0.

How to trim candidate itemsets
In k-iteration, hash all “appearing” k+1 itemsets in a
hashtable, count all the occurrences of an itemset in the
correspondent bucket. In k+1 iteration, examine each of the
candidate itemset to see if its correspondent bucket value is
above the support (necessary condition)[3].

 (I) In trasaction (A, C, D) , a single candidate AC is found in
C2. Occurrence frequencies of all the items are : a[0] = 1, a[1]
= 1, a[2] = 0. Since all the values of a[i] are less than k (k=2),
this transaction is deemed not useful for generating large 3-
itemsets and thus discarded. (II) In transaction(A, B, C, E),
has four candidate 2-items (AC, BC, BE, CE) found in C2.
Occurrence frequencies of all the items are : a[0] = 1, a[1] = 2,
a[2] = 2, a[3] = 2. Since all the values of a[0] are less than k
(k=2), and remaining are >=2, this transaction will be reduced
to (B, C, E) and A is thus discarded.

International Journal of Computer Trends and Technology (IJCTT) – Volume 4 Issue 7 - July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2162

Implementation Evaluation Comparison

Apriori Result DHP Result

Transactions/
Itemsets Analysis

No. of
Rows in

Database
Table

(After Ck)

K Transactions/
Itemsets Analysis

No. of Rows in
Database

Table
(After Ck)

A,C,D
B,C,E

A,B,C,E
B,E

4 - transactions
considered
for study

4

A,C,D
B,C,E

A,B,C,E
B,E

4 - transactions
considered
for study

4

====== C1 =====
A| 2
B| 3
C| 3
D| 1
E| 3

5 - itemsets
for C1 4 1

A| 2
B| 3
C| 3
D| 1
E| 3

5 - itemsets
for C1 4

====== L1 =====
A| 2
B| 3
C| 3
E| 3

4 - itemsets selected
for L1 4

A| 2
B| 3
C| 3
E| 3

4 - itemsets selected
for L1 4

====== C2 =====
A,B| 1
A,C| 2
A,E| 1
B,C| 2
B,E| 3
C,E| 2

6 - itemsets
for C2 4

A,C| 2
B,C| 2
B,E| 3
C,E| 2

4 - itemsets
for C2 2

====== L2 =====
A,C| 2
B,C| 2
B,E| 3
C,E| 2

4 - itemsets selected
for L2 4

A,C| 2
B,C| 2
B,E| 3
C,E| 2

4 - itemsets selected
for L2 2

====== C3 =====

B,C,E| 2 1 - itemset
for C3 4 B,C,E| 2 1 - itemset

for C3 0

====== C3 =====

B,C,E| 2 1 - itemset
for L3 4 B,C,E| 2 1 - itemset

for L3 0

International Journal of Computer Trends and Technology (IJCTT) – Volume 4 Issue 7 - July 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2160

 Comparison of Apriori and DHP
Apriori behaves like - Generate Candidate Set and Perform
Count Support from Database. While DHP behaves in a
sequence – Generate candidate set, perform count support
from the database and make new hash table using database for
the next stage.

Effective Database Pruning
Apriori - don’t prune database but prune Ck by support
counting on the original database, while DHP -Its more
efficient support counting can be achieved on pruned
database[3]

III. CONCLUSION
Apriori is best for frequent pattern mining approach for

newer algorithm development. But after implementation you
can find some challenges like multiple scans of transaction
database, huge number of candidates, tedious workload of
support counting for candidates and we can improve Apriori
with effective hash-based algorithm for the candidate itemset
generation i.e. a two phase transaction database pruning and
much more efficient (time & space) than Apriori algorithm.
Following implementation statics we can find that for the
below example 6-itemsets for C2 & 4-transactions for
database in Apriori while 4-itemsets for C2 & only 2-
transactions for database in DHP.

REFERENCES
[1] Data Mining: Concepts and Techniques, Jiawei Han and

Micheline Kamber, MORGAN KAUFMANN
PUBLISHER, An Imprint of Elsevier

[2] R. Agrawal and S. Srikant, "Fast Algorithms for Mining
Association Rules in Large Databases“, Proceedings of
the 20th International Conference on Very Large Data
Bases, September 1994.

[3] J. Park, M. Chen and Philip Yu, "An Effective Hash-
Based Algorithm for Mining Association Rules",
Proceedings of ACM Special Interest Group of
Management of Data, ACM SIGMOD’95, 1995.

[4] Han, Pei & Yin, "Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree
Approach", Data Mining and Knowledge Discovery,
Volume 8, Issue 1 , pp 53-87,2004

[5] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, " New
Algorithms for Fast Discovery of Association Rules",
Proc. 3rd ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining (KDD'97, Newport Beach,
CA), 283-296 AAAI Press, Menlo Park, CA, USA 1997

[6] Shruti Aggarwal, Ranveer Kaur, “Comparative Study of
Various Improved Versions of Apriori Algorithm”,
International Journal of Engineering Trends and
Technology (IJETT) - Volume4Issue4- April 2013

[7] Agrawal, R., T. Imielin´ ski, and A. Swami (1993).
Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’93, New York, NY, USA, pp. 207–216. ACM.

