
International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1327

Securing User’s Data in HDFS

Hetalben Gajjar
Department of Computer Science,
IT Systems and Network Security,
Gujarat Technological University,

India

Abstract— With the advent of Technology and increasing growth in
volume of data the business are finding the cloud as suitable option
to host their data. However, putting the sensitive data on third-party
infrastructure poses several security risks to their data utilizing the
advantages of the Clouds. Though there are many risks and
concerns are involved in cloud computing according many surveys
conducted by different organizations the prime concern of clients
when opting for cloud solution is the security of their data. Key issue
is to protect important data from unauthorized access by adversaries
in case the confidentiality of data is broken by internal or external
attacks on the cloud hosting those data. HDFS is the file system
suitable for storing and processing large volume of data using
MapReduce model. When public cloud is based on the Hadoop
which uses HDFS to store data, the data are stored in plain text and
by default the transport of data is also insecure when client submit
the data to storage servers on cloud. Requirement here is design and
implement a prototype to secure the HDFS to harness is with
security features so that it can be deployed in public cloud to provide
storage and computing services. We have proposed and implemented
secure HDFS by incorporating Elliptic Curve Integrated Encryption
which provides data confidentiality as well as integrity in Hadoop.
Experiments were carried out to analyze the performance with
respect to other hybrid encryption schemes.

Keywords- HDFS, Cloud, Security, ECIES

I. INTRODUCTION
Cloud computing is expected to be the platform for next

generation computing, in which users carry thin clients such as
smart phones while storing most of their data in the cloud and
submitting computing tasks to the cloud. A web browser serves
as the interface between clients and the cloud. One of the main
drivers for the interest in cloud computing is cost and reliability.
As personal computers and their OS and software are becoming
more and more complex, the installation, configuration, update,
and removal of such computer systems require a significant
amount of intervention time from the users or system managers.
Instead, outsourcing the computation tasks eliminates most of
such concerns. The cloud provides such facilities on demand
based, which can be more cost-efficient for the users than
purchasing, maintaining, and upgrading powerful servers.
However current cloud computing environment poses serious
limitation to protecting User’s data confidentiality. There is

always threat of unauthorized disclosure of data that is sensitive
for user by service provider.

For a cloud consumer to deploy their sensitive data on
service provider’s storage infrastructures requires certain
security assurances. The storage of user’s data on cloud needs
to consider threats not only from outside attacker but also from
service provider itself that is generally following multi-tenant
system where cloud infrastructure is shared by multiple
consumers. There have been various security architectures for
cloud computing proposed by researchers which are discussed
in this survey. Also for storage intensive applications when
large data sets used when stored on cloud based on HDFS
which stores data in plain text, the concern is to provide
security in the distributed file system. If Hadoop cluster is
deployed as private cloud it can be run behind Firewall to
defense the security risks, however if it is on public cloud it is
not secure. So various techniques used by different DFS for
security purpose are also surveyed. There are two major
concerns when it comes to security in a Distributed File System.
1) Secure Communication between client and DFS 2) Secure
File Storage. When the option for data encryption is considered
for providing confidentiality over insecure communication
channel, the selection of appropriate encryption algorithm is
also important. Since key management is cumbersome for
symmetric encryption more appropriate approach is to combine
it with Public Key algorithm. According to the literature survey
most of the public key implementation used RSA as a public
key encryption or Deffie–Hellman which is susceptible to
MITM. One more public key cryptography mechanism is
available, that is Elliptic Curve Cryptography (ECC).
Compared to RSA, the prevalent public-key scheme of the
Internet today, Elliptic Curve Cryptography (ECC) offers
smaller key sizes, faster computation, as well as memory,
energy and bandwidth savings and is thus better suited for
client that has to perform the key generation and
encryption.[16,17] .Where as the encryption schemes addresses
the first concern in security of a DFS the integrity of stored
files can be provided by message authentication code. The
Elliptic Curve Integrated Encryption Scheme [20] can be used as
an option to provide both confidentiality as well as integrity
check.

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1328

Another issues and challenges are key management and
performance overhead when security is implemented using
cryptography which is discussed later.

II. RELATED WORK

Kerberos is the considered suitable option for providing

security in DFS. Kerberos is suggested as security alternative
for Hadoop.[17] Kerberos is based KDC with two parts
Authentication Server and Ticket Granting Server. KDC
generates a session key for communication between two trusted
entities. This approach can be adopted for HDFS. For integrity
purpose cryptographic hash or digest for every file. However it
is proposed for mutual authentication and controlling access to
the data stored on nodes. Kerberos works as follows in HDFS:
Instead of client sending password to application server:
Request Ticket from authentication server Ticket and encrypted
request sent to application server. Using
TicketGrantingTicket(TGT) tickets can be requested without
repeatedly sending credentials. It solves the issue of
authentication but confidentiality and integrity still remains
questionable.

Another solution exists in Hadoop is Tahoe-LAFS using
which the secure distributed file system Tahoe is supported by
Hadoop. Tahoe-LAFS can be used to store files in encrypted
from in the Hadoop cluster and Tahoe can be used as
alternative DFS. However it is not default File System on
Hadoop and for multiple files by a user key management
becomes tedious task. Tahoe is a Secure distributed File
System with least-Authority. It has master-slave Architecture.
Tahoe uses the capability access control model [18] to manage
access to files and directories. In Tahoe, a capability is a short
string of bits which uniquely identifies one file or directory.
Each immutable file has two capabilities associated with it, a
read capability or read-cap for short, which identifies the
immutable file and grants the ability to read its content, and a
verify capability or verify-cap, which identifies the immutable
file and grants the ability to check its integrity but not to read
its contents. For mutable files, there are three capabilities, the
read-write-cap, the read-only-cap, and the verify-cap. Users
who have access to a file or directory can delegate that access
to other users simply by sharing the capability. Users can also
derive a verify-cap from a read-cap, or derive a read-only-cap
from a read-write-cap. This is called diminishing a capability.
The limitation in using Tahoe with Hadoop is it becomes
tedious job to manage multiple keys as number of user files
increases.

 Some traditional and popular Distributed File Systems

[23,24,25,26] which are cluster based studied for literature survey
in order to understand the security provisions they offer. The
focus was on the mechanism used by those Distributed File
Systems in order to provide Authentication, Authorization,

Integrity and Confidentiality. Most of the Distributed File
Systems uses Kerberos or password based authentication and
UNIX based ACL for authorization. Data integrity check is not
considered major issue and if all considered then using
checksum is used. Providing confidentiality encryption is used.
Various architectures and schemes[6,7,8,9,13] are proposed by
researchers for data security in Cloud and also for distributed
file systems which are discussed here. Most the schemes
incorporate the public key and symmetric key cryptography to
solve the purpose. The techniques differ in the way the number
of keys are used, stored and generated. So main concern is
keeping the scheme simple still robust and effective. However
few of them focus on HDFS security and performance overhead
analysis. Hsiao-Ying Lin et al.[19] have proposed and
implemented Hybrid Encryption Scheme for HDFS using
FUSE which mounts HDFS in user’s space. However their
work focuses on Data confidentiality and data integrity concern
still remains to be addressed.

III. SYSTEM DESIGN AND IMPLEMENTATION
DETAILS

 For securing the user’s data on Hadoop we have
implemented client programs which are equivalent of fuse-dfs
module provided by Hadoop in order to perform file read and
write and other operations related to HDFS File system.
However we have integrated the security within read and writes
operations itself. That is the encryption of file contents is
incorporated in write function and the process of decryption of
file is embedded into read operation. The detailed flow of the
steps performed is as follows. When user needs to write file to
HDFS a new random secret key sk and initialization vector for
symmetric encryption algorithm AES is generated for the file in
schemes first and second. Then the sk is encrypted using user’s
public key pk of the asymmetric encryption algorithm and
written to a separate file with same name as the file to be
written to HDFS. This will relieve the user from remembering
and managing secret keys. Then the contents of file are read
from local file system and encrypted using sk and written to
HDFS. AES is used in CBC mode. Similarly when a file is to
be read from HDFS first the encrypted secret key associated
with the file are read from HDFS and decrypted using user’s
asymmetric private key. Then the encrypted file contents are
read from HDFS and decrypted using the retrieved secret key.
 In third scheme that is ECIES the steps followed while
writing a file to HDFS and reading a file from HDFS are shown
in figures 1 and 2. In order to have better comparison of
performance among different schemes AES with CBC mode
with key size 128 is used. For integrity purpose the HmacSHA1
is used which produces message digest of size 160 bits. A 160-
bit elliptic curve is used as a 160-bit key as secure as with RSA
using a 1024-bit key[20]. In this scheme user just need to specify

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1329

the file to be written and the public key for ECC. And steps are
carried out as shown in figure and encrypted file contents along
with ephemeral public key U that is generated by Key
Derivation Function and tag which is computed message digest
of the file are written to HDFS. When the file is to be read from
HDFS with ECIE first the ephemeral public key is read from
beginning of file then from retrieved key U and user’s Private
Key, the symmetric key KENC and MAC key KMAC for the
encrypted file are generated. Also the MAC for encrypted file
contents are calculated and compared with tag value retrieved
from the file. If they match then the file is guaranteed to be
unaltered and using KENC file is decrypted and stored on local
system. For user to create asymmetric key pair of Public key

and Private in case of all three schemes key generation
programs are implemented. The user is supposed to generate
public private key pair by running the key generation programs.
The key pair is generated and stored locally so later it can be
easily retrieved when required. The replication is used by
Hadoop in HDFS to provide robustness. That is multiple
instances of files are stored in HDFS depending upon the
configured value of replication. For implementing the client
program to interact with HDFS Java API provided by Hadoop
is used. For RSA and symmetric encryption algorithm AES Sun
Java 6 is used. However for ECC and ECIE third party provider
that FlexiProvider is used.

 Fig 1. Writing File to HDFS with ECIE

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1330

 Fig 2. Reading File from HDFS with ECIE

TABLE I
EXPERIMENTAL RESULTS OF WRITING FILE WITH DIFFERENT SCHEMES

Writing time in ms
File

size in
KB

RSA ECC ECIE HDFS Default

rep=2 rep=3 rep=2 rep=3 rep=2 rep=3 rep=2 rep=3
2 818.50 831.00 582.80 667.33 699.30 562.11 897.00 730.80

94 790.60 964.56 693.10 652.67 579.40 571.00 836.11 837.20
463 931.90 1004.00 659.00 716.89 781.60 504.89 783.44 801.10

1537 1323.00 1173.00 745.00 860.22 853.80 681.89 818.89 797.90
2547 1534.50 2608.00 844.00 1161.44 1235.20 777.33 1360.56 911.70
6630 2687.00 3913.67 1244.80 2100.11 2295.10 1253.22 1204.89 961.20
9911 3486.80 4539.56 1308.30 2446.11 2729.70 1512.11 1681.67 1765.50

12326 4444.90 6489.11 1366.20 2906.11 2994.50 1735.00 1859.67 1436.10
21428 6650.10 9490.78 1984.30 4586.11 4453.20 2678.00 2503.67 1931.30
27191 8445.40 11879.22 2481.30 5763.11 5405.00 3139.67 2879.44 2404.30

IV. PERFORMANCE EVALUATION, RESULTS AND ANALYSIS

To evaluate and analyze the performance and storage overhead
that is introduced by incorporating the encryption schemes into
HDFS various experiments were executed. The reading and
writing speeds of the default HDFS, HDFS-with combination
of RSA and AES, HDFS-with combination of ECC and AES
and HDFS-with ECIE is then measured. For each scheme the
storage overhead is also analyzed.

A. Scenarios for Experiments

Basically we created a cluster of three nodes with hardware and
software configurations mentioned in next section. Out of three
nodes one acts as NameNode, Secondary NameNode and
DataNode itself and the other two of the three are given roles of
DataNodes only. So all together we have three DataNodes. In
Scenario 1 the configuration of replication factor is 2 that is two
replicas are stored on DataNodes in HDFS for each file. While
in scenario 2 the set up is same but the replication factor is set
to 3 so that three instances of each file are stored on the
DataNodes which makes it more robust. We have not

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1331

considered the replication factor 1 as only single instance of
each file is stored so the system will not be considered reliable.
 The time taken to write a file to HDFS in all the four
cases is measured by copying file from local system that is
running as a Virtual Machine on same host to HDFS. Similarly
the read time is measured in all four cases by copying the files
stored on HDFS to local system. In order to get average write
and read times we used 10 different files of different types with
file size ranging from 2 KB to 27191 KB. In order to get more
precise results each

experiment is conducted 10 times and the average of the results
is taken.

B. Set up of Experiments

The experiments for analysis purpose are conducted on virtual-
network in VMWare. Each virtual machine in VMware acts as
one physical node in our experiment profile. All virtual
machines representing physical nodes are created and run in
single host machine that has hardware configuration of Intel

core i53210M 2.5GHz with Turbo Boost up to 3.1GHz, 4GB
DDR3 memory and 500 GB HDD.
The hardware configurations of all the virtual machines are all
same i.e 512 MB memory and 20 GB disk. The operating
system on each node is Ubuntu LTS 10.04.4 and Hadoop 1.0.4.

C. Write performance analysis

The table I depicts the experiment results that are writing times
in each of four cases with replication factors 2 and 3. In general
the time consumption in each case in each scenario gradually
increases with the increase in file size.
 As shown in figure 3 the performance of ECC is quite
close to default HDFS. Even though there is overhead of three
operations namely a) encryption of the symmetric encryption
key for the file b) Writing of the encrypted key in separate file
c) Encryption of the File contents is involved. Highest time is
taken by RSA with AES. And ECIE that provides integrity as
well by including MAC takes more time than ECC but still
performs better than RSA. The graph rises rapidly in case of
RSA with increase in file size while it tends to get stable in case
ECIE and ECC.

Fig 3. Write time comparisons in different schemes. Figure on left for scenario 1 and right figure for scenario 2

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1332

TABLE II

EXPERIMENTAL RESULTS OF READING FILE WITH DIFFERENT SCHEMES

Read time in ms

File size
in KB

RSA ECC ECIE HDFS Default
rep=2 rep=3 rep=2 rep=3 rep=2 rep=3 rep=2 rep=3

2 625.80 634.00 467.90 491.10 525.00 463.33 825.50 685.30
94 630.70 671.00 445.50 495.80 500.90 460.22 872.75 655.60

463 741.20 745.33 438.60 515.80 549.70 480.89 1139.50 734.50
1537 969.10 1120.78 505.60 769.90 761.80 822.78 1235.00 734.90
2547 1410.30 1356.78 579.60 824.40 975.80 1033.44 1822.00 926.50
6630 2588.60 2075.11 788.20 1116.40 1428.50 1359.67 1209.00 880.70
9911 3485.80 2999.00 954.40 1521.70 1695.40 1777.22 1426.63 1140.60

12326 4241.50 4307.44 1127.30 1712.90 1597.00 2169.56 1821.00 1166.00
21428 6912.70 7620.22 1358.90 2427.10 3334.30 2879.44 2061.88 1305.70
27191 8340.00 9259.00 1922.30 3230.40 4239.90 3098.11 2776.38 1421.70

With replication factor set to 3 the performance of RSA is still
poor of them all as depicted from graph. Here ECIE performs
better than ECC and quite close to default HDFS.

D. Read performance analysis

The experimental results for reading times in each of four cases
with replication factors 2 and 3 are shown in table II. As shown
in figure 4 the again performance of the HDFS with RSA is
worst while reading files when replication factor is 2. The
overhead is directly proportional to size of the file. On the other
hand ECC gives best performance which is followed by
ECIE.In both the cases the read time tends get gradually stable
with increasing file size. While reading the files the
performance is hit by the overhead of decrypting the file
contents in case of RSA, ECC and ECIE.

 In case of RSA and ECC the reading overhead includes a)
Reading the encrypted symmetric key b) Carrying out the
decryption of the symmetric key c) Decryption of File contents.
Even though the integrity check is performed by ECIE apart
from the aforementioned three operations, it performs better
than RSA. While in first two schemes two files have to be read
from HDFS, the third scheme reads a single file as no separate
file is stored. As shown in figure 4 on right, when the
replication factor is set to 3 the performance of RSA degrades
heavily with the increase in file size as in all the cases we
discussed earlier. Here ECIE and ECC tend to approach same
reading time and is getting changed little with very large file
size.

 Fig 4. Read time comparisons in different schemes. Figure on left for scenario 1 and right figure for scenario 2

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1333

 Fig 5: RSA performance comparison with replication 2 and 3. The left figure shows write time and right figure shows read time

E. Comparing performance of individual schemes with
change in replication factor

When the analysis of time taken in read and writes operations is
done in the case of HDFS with RSA with replications factors
configured to 2 and 3, it can be observed
from the graphs in Figure 5 that there is not much difference in
time taken while writing files of smaller size, however when
the file size increases the more time is consumed. However in
case of read operation the time taken is significantly less in case
of replication value 3. According figure 6 the time to copy files
as well as retrieving files from HDFS with ECC is less in case
of replication value 2 but little higher with replication 3. It can
be observed from figure 7 that writing and reading operation of
files on HDFS with ECIE when the replication factor is 3 takes
less time than with the two instances of files are stored. And the
time tends to get stable in both read and write operations with
replication factor 3.

F. Storage Overhead

As far as the client side storage overhead is concerned in our
implementation is just the storage of Public and Private keys in
all the schemes. The RSA and ECC public and private keys of
user don’t take more than 1 KB. We are storing the unique
randomly generated asymmetrically encrypted secret key for
each user file on server. In case of RSA it is just 128 Bytes and
in case of ECC it is 73 bytes only. Whereas in case of ECIE no
separate file is used to store anything ECIE inserts ephemeral
Public key and tag at the beginning of the original file whereby
modifying the original file size. However the extra bytes added
in file are at most 52 bytes.

Fig 6. ECC performance comparison with replication 2 and 3. The left figure shows write time and right figure shows read time.

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1334

Fig 7 ECIE performance comparison with replication 2 and 3. The left figure shows write time and right figure shows read time

V. CONCLUSION
 We have introduced an approach which is based on Elliptic
Curve Integrated Encryption System to harness the Hadoop
Distributed File System with security. In addition to
provisioning for data confidentiality our implementation also
provides integrity of user’s data. Also a new random secret key
is generated for each file that is stored on HDFS. However the
user is freed from the overhead of secret key management as it
is transparent to user. All user have to do is manage the Public
and Private Keys of Public Key Encryption. The encryption and
decryption of files when written to and read from Hadoop poses
performance overhead. However for files of small size
performance overhead is negligible so it is better suited for
such applications. Our security integration in HDFS adds very
small storage overhead on server and client.

VI. ACKNOWLEDGMENT
I thank Prof. B.S.Bhatt from Dharmsinh Desai University for

his valuable guidance and support in this research.

REFERENCES
[1] Amit Sangroya, Saurabh Kumar, Jaideep Dhok, and Vasudeva

Varma, “Towards Analyzing Data Security Risks in Cloud
Computing Environments “

[2] Kevin Fogarty, ”The Biggest Cloud Computing Security Risk Is
Impossible to Eliminate”,
http://www.networkcomputing.com/security/the-biggest-cloud-
computing-security-ris/240005337?pgno=2

[3] Tim Mather, Subra Kumaraswamy, Shahed Latif, “Cloud Security
and Privacy”-O’Reilly

[4] Sashank Dara, “Confidentiality without Encryption For Cloud
Computational Privacy Chaffing and Winnowing in
Computational-Infrastructure-as-Service”

[5] K.Mukherjee and G.Sahoo “A Secure Cloud Computing”, Recent
Trends in Information, Telecommunication and Computing
(ITC),International Conference on12-13,March 2010,
Page(s): 369 - 371

[6] Stephen S. Yau and Ho G. An “Protection of Users’ Data
Confidentiality in Cloud Computing”,2010 International
Conference on Recent Trends in Information, Telecommunication
and Computing, ISBN: 978-1-4503-0694-2

[7] Sushil Jajodia, Witold Litwin and Thomas Schwarz,”Privacy of
Data Outsourced to a Cloud for Selected Readers through
Client-Side Encryption”,WPES’11, October 17, 2011,
Proceedings of the 10th annual ACM workshop on Privacy in the
electronic society, pp 171-176, ISBN: 978-1-4503-1002-4

[8] Krishna P. N. Puttaswamy, Christopher Kruegel, Ben Y. Zhao,
“Silverline: Toward Data Confidentiality in Storage-Intensive
Cloud Applications”-SOCC’11, October 27–28, 2011

[9] Dai Yuefa, Wu Bo, Gu Yaqiang, Zhang Quan, Tang Chaojing,
“Data Security Model for Cloud Computing”, ISBN 978-952-
5726-06-0 Proceedings of the 2009 International Workshop on
Information Security and Application (IWISA 2009) Qingdao,
China, November 21-22, 2009

[10] Ethan Miller Darrell Long William Freeman and Benjamin
Reed,”Strong Security for Distributed File Systems”, 34 – 40,
Performance, Computing, and Communications, 2001. IEEE
International Conference Date of Conference: Apr 2001

[11] Fangyong Hou1, Dawu Gu2, Nong Xiao1, Yuhua Tang1, “Secure
Remote Storage through Authenticated Encryption, International
Conference on Networking, Architecture, and Storage”, IEEE
International Conference on Networking, Architecture, and
Storage, ISBN-978-0-7695-3187-8,2008 IEEE

[12] Konstantin Shvachko, Hairong Kuang, Sanjay Radia and Robert
Chansler,”The Hadoop Distributed File System”, Proceedings of
the 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), p.1-10, May 03-07, 2010

[13] Qingi Shen,Dandan Wang and Min Long,”SAPSC: Security
Architecture of Private Storage Cloud Based on HDFS”, waina,
pp.1292-1297, 2012 26th International Conference on Advanced
Information Networking and Applications Workshops, 2012

International Journal of Computer Trends and Technology (IJCTT) - volume4 Issue5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1335

[14] Joppe W. Bos, Marcelo E. Kaihara and Thorsten Kleinjung, “On
the Security of 1024-bit RSA and 160-bit Elliptic Curve
Cryptography”, IACR Cryptology ePrint Archive 2009: 389,
2009

[15] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle,
Sheueling Chang Shantz “Comparing Elliptic Curve
ryptography and RSA on 8-bit CPUs”, 6th International Workshop
Cambridge on Cryptographic Hardware and Embedded Systems,
ISBN 3-540-22666-4, Aug 2004.

[16] Pavel Bzoch and Jiri Safarik “Security and Relaibility of
Distributed File Systems”, Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS), 2011 IEEE 6th
International Conference,15-17 Sept.2011,Volume: 2 pp 764 -
769

[17] http://hadoop.apache.org/core/docs/current/hdfs_design.html
[18] Owen O’Malley, Kan Zhang, Sanjay Radia, Ram Marti,and

Christopher Harrell. “Hadoop security design”.
https://issues.apache.org/jira/secure/attachment/12428537/
securitydesign.pdf, October 2009.

[19] Hsiao-Ying Lin, Shiuan-Tzuo Shen, Wen-Guey Tzeng, Bao-Shuh
P. Lin, “Towards Data Confidentiality via Integrating Hybrid
Encryption Schemes and Hadoop Distributed File System”,March

2012 26th IEEE International Conference on Advanced
Information Networking and Applications, 978-1-4673-0714-7,p
740-741

[20] V. Gayoso Martínez, L. Hernández Encinas, C. Sánchez Ávila,
“A Survey of Elliptic Curve Integrated Encryption System”,
Journal Of Computer Science And Engineering, Volume 2, Issue
2, AUGUST 2010

[21] Brian Warner,Zooko Wilcox-O'Hearn and Rob
Kinninmont,”Tahoe: A Secure Distributed Filesystem”,Mar 2008,
https://tahoe-lafs.org/~warner/pycon-tahoe.html

[22] http://bigdata.wordpress.com/2010/03/22/security-in-hadoop-
part-1/

[23] Samuel Sheinin,”NFS Security”,Global Information Assurance
Certification Paper, SANS Institute 2000 – 2002

[24] http://www.coda.cs.cmu.edu/doc/html/sec-1.html
[25] John.H.Howard,”An overview of the Andrew File System”,CMT-

ITC-88-062
[26] Tran Doan Thanh1, Subaji Mohan1, Eunmi Choi, SangBum

Kim2 and Pilsung Kim,”A Taxonomy and Survey on Distributed
File Systems”, Fourth International Conference on Networked
Computing and Advanced Information Management, 2008, 978-
0-7695-3322-3/08

