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Abstract— Floating point operations are hard to implement on 
Field Programmable Gate Arrays (FPGA) because of the 
complexity of algorithms is more.  Then again, many scientific 
applications require floating point arithmetic because of high 
accuracy in their calculations. Therefore, an attempt is made to 
explore FPGA implementations in Institute of Electrical and 
Electronics Engineers (IEEE) -754 standard floating-point 
numbers. Many algorithms depend on floating point arithmetic 
because floating point representation supports huge range. In 
this paper an efficient implementation of an IEEE 754 single 
precision floating point arithmetic unit is designed in Xilinx 
SPARTAN 3E FPGA. VHDL environment is performed for 
floating point arithmetic unit design using pipelining, which 
provides high performance. Pipelining is used to execute 
multiple instructions simultaneously. In top-down design 
approach, four arithmetic modules, addition/ subtraction, 
multiplication and division are combined to form a floating 
point arithmetic unit. Synthesis and simulation results are 
obtained by using Xilinx13.1i platform. 
 
Keywords— ALU - Arithmetic Logic Unit; Top-Down design; 
floating point; FPGA; Pipelined Architecture. 
 

I. INTRODUCTION 
 

By using Field Programmable Gate Arrays (FPGAs) the 
designers can build any logic device in hardware quickly 
and easily. The programmability and flexibility of FPGAs 
make them ideal for prototyping, quick time-to-market 
applications, one-off implementations, and customized 
hardware. They are especially valuable in applications when 
a custom circuit is required, but the production volume does 
not justify the costs and time of fabricating them on 
application-specific integrated circuits (ASICs). Advances 
in process technology have led to dramatic increase in 
FPGAs densities and speeds. FPGAs are now becoming 
more suitable for supporting designs with dense 
computations and high operating frequencies. Consequently, 
FPGAs are becoming more suitable for supporting high 
speed floating point arithmetic units. Floating point units are 
widely used in digital applications such as digital signal 
processing, digital image processing and multimedia. In 
conventional floating point units, the most frequently used 
floating point operations are multiplication and 
addition/subtraction counting for more than 94% of all 
floating point instructions. Hence the employment of highly 

performing divider, multiplier and adder/subtractor modules 
is of high importance. 

Floating-point addition is the most complex operation in 
a floating-point arithmetic and consists of many variable 
latency- and area dependent sub-operations. In floating-
point addition implementations, latency is the primary 
performance bottleneck. Much work has been done to 
improve the overall latency of floating-point adders. Various 
algorithms and design approaches have been developed by 
the VLSI community in the last two decades. For the most 
part, digital design companies around the globe have 
focused on FPGA design instead of ASICs because of their 
effective time to market, adaptability, and, most 
importantly, low cost. The floating-point unit is one of the 
most important custom applications needed in most 
hardware designs, as it adds accuracy, robustness to 
quantization errors, and ease of use. There are many 
commercial products for floating-point addition that can be 
used in custom designs in FPGAs but cannot be modified 
for specific design qualities like throughput, latency, and 
area. Much work has also been done to design custom 
floating-point adders in FPGAs. Most of this work aims to 
increase the throughput by means of deep pipelining. 
 

II. DESIGN OF FLOATING POINT ADDER/SUBTRACTOR 
 

The algorithms for addition/subtraction require more 
complex operations due to the need for operator alignment. 
Three floating point add/subtract algorithms are briefly 
introduced in this section: standard, leading-one predictor 
(LOP), and 2-path. The implementation of these steps 
defines floating point arithmetic unit latency and area. To 
illustrate comparisons, we consider the block diagrams of 
the floating point adder/subtractor shown in Figures 1, 2, 3. 
Standard floating point addition requires five steps: 

1. Exponent difference 
2. Pre-shift for mantissa alignment 
3. Mantissa addition/subtraction 
4. Post-shift for result normalization 
5. Rounding 
 
The area-efficient standard floating point adder is 

shown in Figure 1. The exponents of the two input operands, 
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ExponentA and ExponentB are fed to the exponent 
comparator. In the pre-shifter, a new mantissa is created by 
right shifting the mantissa corresponding to the smaller 
exponent by the difference of the exponents so that the 
resulting two mantissas are aligned and can be added. Right 
shifting is nothing but dividing by power of 2. If the 
mantissa adder generates a carry output the resulting 
mantissa is shifted one bit to the right and the exponent is 
increased by one. The normalizer transforms the mantissa 
and exponent into normalized format. Result of subtraction 
may require a massive left shift during normalization. It first 
uses a Leading-One-Detector (LOD) circuit to locate the 
position of the most significant one in the mantissa.  

Based on the position of the leading one, the resulting 
mantissa is left-shifted by an amount subsequently deducted 
from the exponent. In the normalization process if the adder 
result is too large then it shifts to right (divide by2) and if 
the adder result is too small then it shifts to right (multiply 
by 2).Precission is lost when some bits are shifted to right of 
the right most bit or are thrown. To obtain the accuracy the 
shifted out bits are also used as G(I), R(round),S(sticky).If 
G=R=1 then add 1 to the LSB of result. If G=R=0 then no 
change in result. If G=1 & R=0 then look at S. If S=1 add 1 
to LSB and if S=0 round the nearest even i.e. add 1 to LSB 
if LSB=1.  
 
A. Standard Floating Point Add/Subtract Algorithm 

 
For the standard algorithm, the exponent comparator is 

implemented with a subtractor and a multiplexer. The 
comparator requires about 2×n LUTs, where n is the 
exponent bit-width. The size of the pre-shifter is about m × 
log(m) LUTs, where m is the bit-width of the mantissa. The 
size of the mantissa adder depends on the adder architecture 
and sign mode. If a ripple-carry adder is used for an 
unsigned mantissa, about m LUTs are required. The 
752normalizer LOD is nearly the same size as the mantissa 
adder. The shifter is equal in size to the pre-shifter and the 
subtractor (SUB) is about the same size as the exponent 
comparator. Overall, the size of the 752normalizer is about 
the sum of the sizes of the other three components. 
 

 
Fig. 1 LOD Algorithm 

B. LOP Algorithm 
 

Figure 2 shows a block diagram of a Leading-One-
Predictor (LOP) floating point adder. LOP is a technique in 
which no. of preceding 1’s or 0’s in the result can be 
predicted directly from the input operands to within an error 
of 1-bit, in parallel with addition/subtraction step. The error 
comes from possible carry-in. It has mainly two purposes 
first, it detects the bit pattern and second it is used for sticky 
bit computation. This adder implementation requires more 
area than a standard adder, but exhibits reduced latency. The 
primary difference between the adders is the replacement of 
the leading-one detector (LOD) circuit with a leading-one 
predictor (LOP) circuit. Since the LOP circuit can be 
executed in parallel with mantissa addition, overall latency 
can be reduced. 

 
 

 
 

Fig.2 LOP Algorithm 
 
 

C. FAR and CLOSE Path Algorithm 
 

The 2-path adder, shown in Figure 3, has two parallel 
data paths. This implementation exhibits the smallest 
latency of the three adders, due to the elimination of a 
shifter from the critical path, at the cost of additional 
mapping area. When the exponents of the two values are  



International Journal of Computer Trends and Technology (IJCTT) - volume4Issue4 –April 2013  

 

ISSN: 2231-2803    http://www.ijcttjournal.org  Page 753 
 

 
 

Fig. 3 Two-path Algorithm 
 

larger than 1, the far path, on the right in Figure 3, is taken. 
Otherwise, the close path on the left is taken. After 
alignment, one of the mantissas is reduced and shifted by at 
most one bit. This close path implementation eliminates the 
preshifter. 
 

III. FLOATING POINT MULTIPLICATION 
ALGORITHM 

 
Normalized floating point numbers have the form of 

Z= (-1S) * 2 (E - Bias) * (1.M). 
To multiply two floating point numbers the following is 
done: 

1. Multiplying the significand; i.e. (1.M1*1.M2) 
2. Placing the decimal point in the result 
3. Adding the exponents; i.e. (E1 + E2 – Bias) 
4. Obtaining the sign; i.e. s1 xor s2 
5. Normalizing the result; i.e. obtaining 1 at the 

MSB of the results’ significand 
6. Rounding the result to fit in the available bits 
7. Checking for underflow/overflow occurrence 
 

Fig.4 shows the data path for a floating-point Multiplication. 
Only the main parts of the data path are shown for clarity. 
The prealignment and normalization stages require large 
shifters. The prealignment stage requires a right shifter that 
is twice the number of mantissa bits (i.e., 48 bits for single-
precision, 106 bits for double-precision) because the bits 
shifted out have to be maintained to generate the guard, 
round and sticky bits needed for rounding. The shifter only 
needs to shift right by up to 24 places for single-precision or 
53 places for double-precision. 

 

 
Fig.4 Floating Point Multiplication Algorithm 

 

 
 

Fig.5 Booth Wallace Multiplier 
 

The normalization stage requires a left shifter equal to 
the number of mantissa bits plus 1 (to shift in the guard bit), 
i.e., 25-bits for single-precision and 54-bits for double-
precision.  If the rounding of the mantissa results in an 
overflow, the mantissa is shifted right by one and the 
exponent is incremented. a very wide multiplier—53 53-bit 
unsigned multiplier for double-precision and 24 24-bit for 
single-precision. Therefore, an efficient multiplier must be 
employed. 

In this work, we use a Radix-4 modified booth encoded 
(MBE) Wallace multiplier as shown in Fig. 5, which was 
based on the designs in. Radix-4 recoding halves the number 
of partial products, thus reducing the number of levels 
required in the Wallace tree, which improves performance 
and reduces area. 

 
IV. FLOATING POINT DIVIDER ALGORITHM 

 
To divide two floating point numbers the following is 

done: 
1. Divide the significands; i.e. (1.M1÷1.M2) 
2. Placing the decimal point in the result 
3. Subtracting the exponents; i.e. (E1 + E2 – Bias) 
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4. Obtaining the sign; i.e. s1 xor s2 

 
 

Fig. 6 Floating Point Arithmetic Unit Design 
 

5. Normalizing the result; i.e. obtaining 1 at the MSB of 
the results’ significand 

6. Rounding the result to fit in the available bits 
7. Checking for underflow/overflow occurrence. 
 

V. ALU DESIGN 
 

The ALU design using VHDL the Specifications 
for a 16-bit floating-point ALU design are: 

 
i. Input A and B and output result are 32-bit 

binary floating point. 
ii. Operands A and B operate as follows  

A (operation) B=results 
Operation can be addition (+), subtraction (-), 
Multiplication (*), division (/) 

iii. ‘Selection’ a 2-bit input signal that selects ALU               
operation and operate as shown in table1. 

iv. Status- a 4-bit output signal work as flag a 
microprocessor. 

v. Clock pulse is only provided to the module 
which is selected using demux. 

vi. Concurrent processes are used to allow 
processes to run in parallel hence pipelining is 
achieved by this execution. 

 
Table I. Status Signals 

 
S1 and So operation 

00 add 

01 sub 

10 Multiply 

11 divide 

 
Fig. 7 Pipelining 

 
VI. SIMULATION RESULTS 

 
A. Adder/subtractor 

The opa and opb are the two inputs (32-bits) of 
floating point adder and add (32- bits) is the output of 
floating point adder. The overflow bit will be high if 
range exceeds the maximum value and underflow bit 
will be high if range is smaller than minimum value 

 

 
 
Fig. 8 Behavioral Simulation of Floating Point Adder/Subtractor. 

 
B. Multiplier 

 
The fp_a and fp_b are the two inputs (32-bits) of 

floating point multiplier and fp_z (32-bits) is the output 
of floating point multiplier. 
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Fig.9 Behavioral simulation of floating-point multiplier. 
 
 

C. Divider 
 
The ‘a’ and ‘b’ are the two inputs (32-bits) of 

floating point divider and result (32-bits) is the output of 
floating point divider. The ‘go’ signal should be high and 
reset signal should be ‘0’.The output bit overflow will be 
high if range of the number is exceeds the maximum 
value. 

 

 
 

Fig.10 Behavioral Simulation of Floating Point Divider. 

 
Table II. Floating point adder Analysis 

 

module Clock 
period(ns) Area(slices) Logic 

levels 

FP 
ADDE

R 
 

LOD 33.159 694 44 

LOP 28.358 731 31 
Two-
path 22.313 1020 29 

FP multiplier 
 10.402 272 34 

FP divider 
 7.058 185 27 

 
VII. CONCLUSION 

 
This paper presents single precession floating point 

arithmetic unit. Four operations are implemented and 

simulated: addition, subtraction, multiplication and division. 
FP addition is implemented using LOD, LOP and two-path 
algorithms. The tradeoff between area and delay is observed 
in the floating point arithmetic unit by replacing different 
types of floating point adder algorithms in place of addition. 

 
VIII. FUTURE SCOPE 

 
The future scopes of this project are to implement the 
proposed floating point arithmetic unit using Field-
Programmable Gate Arrays (FPGAs). 
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