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Abstract— A new susceptible-infected-susceptible model is 
researched in this paper, which has an infective vector. And it 
describes epidemics (e.g. malaria) transmitted through an 
infective vector (e.g. mosquitoes) on complex networks. We 
compare the modified model with the standard SIS model 
having an infective vector. We also study and compare the 
effects of the uniform immunization and targeted immunization 
on complex networks. Then, analytical and simulated results are 
given to show that the uniform immunization strategy to the 
modified model is very effective on scale-free networks.  
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I. INTRODUCTION 
In recent years, how the infectious diseases 

transmitted has attracted much attention and 
interest both medical practice and academia. The 
development of such mathematical models 
[1],[2],[3] is aimed at understanding the 
mechanisms of infectious diseases. These models 
predict the consequences of the presentation of 
public health interventions to control the 
transmission of diseases, and they help us to 
expound on effective strategies to minimize the 
destructiveness caused by various infectious 
diseases.  

Many studies on complex networks, such as 
susceptible-infected-susceptible (SIS) [4]–[8], 
susceptible-infected-removed (SIR) [9],susceptible 
-infected (SI) [10]–[12], have been researched 
during the past years. Cooke proposed a model for 
the transmission of an infectious disease [13]. 
Busenberg and Cooke[14], Marcati and Pozio [15] 
considered the extensions of the model. Only the 
spread of an infectious disease transmitted by a 
vector was considered by them. Actually, many  
factors influence the dynamics of some diseases 
(e.g. malaria, yellow and dengue fever), such as 

humans, the vector and the blood transfusion 
transmission, as well as the environment. It  
affects directly or indirectly these elements and the 
interrelations among them [20],[21]. 

Other hosts such as mosquitoes mediate disease 
transmission in many infectious human diseases 
[22]. On this occasion, diseases transmission not 
only by contacts between individuals, but also by 
contacts between individuals and vector. Although 
the human’s contacts can be considered as SF, a 
mosquito may bite a person without any selectivity. 
To research such a spreading characteristic, this 
paper extends the standard model to qualitatively 
understand and describe the mechanism of 
epidemics spread by applying two immunizations 
strategies (uniform immunization and targeted 
immunization).   

The following SIS model with an infective 
vector on complex networks [23] is discussed: 

    
      1

2

( ) ( ) 1 ( ) 1 ( ) ( )
( ) ( ) 1 ( )
k k k kI t I t k I t t I t t
t t t t

   
    
       
     




 （1）

In the above model, both individuals and infective 
vector are considered as the same nodes in the 
network, but it is not the case in reality. Actually, 
the human contacts can be considered as scale-free, 
but the infective vector will bite a person no matter 
what the degree of this person is. However, they 
assume that a mosquito is likely to bite a person 
with large degree in [23]. A modified SIS model 
with an infective medium was proposed by Yang et 
al. [24] aimed at above model.  

Based on the above SIS model, we investigate a 
modified SIS model in this paper with an infective 
medium on complex networks. Furthermore, we 
will show that the main features and theoretical 
results obtained are different from those presented 
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in the above SIS model by applying uniform 
immunization and targeted immunization to the 
modified model.  

The rest of the paper is organized as follows. In 
Section 2, we construct the SIS model with an 
infective vector on complex networks. We discuss 
the effect of the uniform immunization strategy 
and Targeted immunization strategy on the 
modified model in Section 3. Finally, Section 4 
concludes the paper. 

II. THE MODEL 

Generally speaking, in most of SIS-like models 
there is only one type of node-individuals [22] and 
the epidemic can only be diffused by individual 
contacts. We usually neglect the influence of the 
infected vector such as mosquitoes.  

In this paper, the epidemic model is defined as 
follows: there are two types of nodes in a network, 
one is composed of individuals and the other is 
composed of female mosquitoes (only female 
mosquitoes infect humans) [20], [22]. All nodes 
can only exist in one of the two discrete states, 
susceptible (i.e. healthy) or infected. The model in 
this paper completely neglects the details of the 
infection mechanism within each individual. And 
the disease transmission is described in the 
following way: At each time step, a susceptible 
individual is infected with probability  if it is 
connected to an infected individual, and infected 
individuals are cured and become susceptible again 
with probability . Therefore = /   (without lack 
of generality, we set =1 ) is considered as an 
effective spreading rate. Different from other 
models, at each time step here, susceptible 
individuals are infected with probability 1 due to 
the bites by infected mosquitoes. Moreover, 
susceptible mosquitoes are infected with 
probability 2 due to biting on infected persons. 
Then, all individuals as well as mosquitoes run  
through the susceptible-infected-susceptible cycles 
stochastically. Here, we will not incorporate the 
possibility of individual removal due to birth and 
death or acquired immunization. Also it is assumed 
that there is no infection spreading between 
mosquitoes. Moreover, we assume that the infected 

female mosquitoes will recover to susceptible with 
the probability and that there is no natural death 
or disease-related death with respect to mosquitoes, 
so the number of female mosquitoes is constant. 
The transmission sketch is shown in Fig.1. 

 
Fig. 1 Flowchart of disease transmission between individuals and mosquitoes. 

All individuals as well as mosquitoes run stochastically through the 
susceptible-infected-susceptible cycles. 

 
Let ( )kS t , ( )kI t denote the densities of susceptible 

and infected nodes with degree k at time t , 
respectively. And let  tV be the density of the 
infective medium at time t . Then 

( ) ( ) 1,k kI t S t   
and the mean-field equations for infected nodes 
with degree k can be written as 

    
      1

2

( ) ( ) 1 ( ) 1 ( ) ( ),
( ) ( ) 1 ( ) .
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t t t t

   
    
      
    




 （2）

                    
Here, is the infection rate, ( ) ( ) ( )kt p k I t  is the 
density of infected individuals on the 
network, 1 and 2 are constants and according to 
[12], ( )t can be written as

 ( ) ( ) 1( ) ( )
( )
k

k
kp k I tt kI t

kp k k
    

  
 （3）                                                                                                                             

Where  p k is the connectivity distribution, k  is 
the average degree of the network. 

By imposing the stationarity condition 
( ) 0,

( ) 0,
kI t
t

 
 




  （4）

                                                                                
the first equation of system (2) yields 

1

1
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1 ( ) ( )k
k t t
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k t t
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  
 
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 （5）
                                                 

The second equation of system (2) yields 
2

2

( )
( )

1 ( )
t

t
t

 


 



 （6）

                                                                                                      
Substituting (6) into (5), one obtains 

2 1 2

2 2 1 2
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 （7）
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Let 1 2 1 2( ) ( ) ( ) ( ),k t k t t t             

   2 2 2 1 21 ( ) ( ) ( ) ( ) ( ).t k t k t t t                 
One has 

1

2

( , )
( ) .

( , )kI t



 

 

 

Then, one obtains a self-consistency equation as 
follows: 

1
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( , )1( ) ( ( ))
( , )

t k t
k




 
    

   
 （8）

                                                                  Obviously, ( ) 0t  is a trivial solution of (8). If 
there is another solution ( ) 0t  , we must have 

0
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


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That is 
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Let c be the minimum value of  satisfying the 
above inequality. Then, 
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.
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In [12], we derived an epidemic threshold for the 

standard SIS model as '
2 .c

k
k


 


 

It is easy to see 

that c   that is, when an infective medium is 
added to the standard SIS model, the infected 
individuals are more likely to reach some 
stationary density. In [11], similarly, one can obtain 

'' 1 2
2

(1 )
.c

k
k
 


  


 

 

According to the Jessen inequality, 2 2k k     is 
always valid, then it is easy to check that c c   , 
this means that the epidemic propagation on the 
modified model is much harder to outbreak than 
that for the model discussed in [12](see Fig.2).  

III. THE EFFECT OF VACCINATION STRATEGIES  
Vaccination is very powerful in controlling the 
disease. In this section, we will discuss the impact 
of various immunization schemes to give some 
effective strategies to control the disease on 

various complex networks. 
 

 
Fig. 2 This simulation is performed on BA networks with size 105N  and  

the average degree of the network 6k   . 

 
A. Uniform immunization on complex networks 
Uniform immunization strategy is the simplest 
immunization scheme [14], so we use it as a 
typical methodology to compare its different 
effects in the modified model here and in the  
model of [11]. Consider the following model: 

 
   1
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( ) ( ) 1 ( ) ( )

11k k k kI t I t g k I t t I t t
t t t t

  
    
        
    




 （ ）

Here, g is the density of immune nodes on the 
network. Similarly to Section 2.1, one can obtain 

 
     

1 2
1 2 2 2 2

1 2
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1 1
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In [11], the following uniform immunization  
system is studied:      
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For the above system, similarly to Section 2.1, one 
has 

 
 

1 2
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1 1
1c

g k
g k

 


     
  

  

Then, it is easy to obtain 1 2c c  , therefore 
clearly, the uniform immunization used in the 
modified model is more efficient than that used in 
the model presented in [11] (see Fig. 3). 
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Fig. 3 The change between the density of infected individuals  and the  
density of immune nodes on the network g , and this simulation is  

performed on BA networks with size 105N  , the average degree of the  

network 16, 0.1, 0.4k       and 2 0.5  . 

 
B. Targeted immunization on complex networks 
While uniform immunization schemes are effective 
in networks with well-defined immunization 
thresholds, it is still important to consider the effect 
of targeted immunization on the models. The 
strategy here is to immune the most highly 
connected nodes, i.e. the ones that more likely 
spread the disease. For the network, we introduce 
an upper threshold tk , and all nodes with 
connectivity tk k are immune. Calculating a 
complex network with the continuous k -approxim- 
-ation shows that the density of immunized nodes 
is related to the connectivity threshold, as 

2 21 ( )tk

tm
g P k dk m k     

In an SF network, the contact between 
individuals relates to individuals’ connectivity k , 
but a mosquito will bite a person without 
selectivity. That is, the infections among 
individuals are associated with the connectivity 
distribution, yet the transmission between persons 
and mosquitoes is only determined by the 
infectivities 1 and 2 . Thus, the dynamic mean-field 
reaction rate equations can be written as 

 
   1

2

( ) ( ) 1 ( ) ( ( )) 1 ( ) ( )
( ) ( ) 1 ( ) ( ( ))

12k k k kt t k t t t t
t t t t

       
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      
    




 （ ）

                                                                
where the probability 0 ( ( )) 1t   describes a link 
pointing to an infected individual, which satisfies 
the relation 

( )
( ( ))

( )
13k

k s

kP k
t

sP s


 
 （ ）

                                                                                                  

and ( ) ( ) kk
t P k  is the density of infected 

individuals in the whole network, ( )P k is the 
connectivity distribution. 

In this strategy, kg is defined as the fraction of 
immune individuals with a given connectivity k . 
Suppose the condition for the proportional 
immunization is 

1(1 )k g constant     
Then, system (11) yields  
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Then, system (14) yields 
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
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In the steady (epidemic) state,  is just a function 
of , 1 and 2 , thus the probability  becomes an 
implicit function of the spreading rates, 1 and 2 . 
By imposing the stationarity condition 

 ( ) 0,
( ) 0,
k t
t










 

one has 
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The second equation of (16) yields 
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and substituting it into the first equation of system 
(16) gives  
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Obviously, 0  is a solution of (17). If there is  
another solution 0 1,   it must satisfy       
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that is,
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Let c be the minimum value of satisfying the 
above inequality. Then 
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
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Where 2 2 ( ).

k
k k P k    

Now, consider a BA model. By using a 
continuous k approximation that allows a practical 
substitution of series with integrals [13],[23], the 
full connectivity distribution can be obtained 
as 2 3( ) 2 / ,P k m k where m is the minimum number 
of connections at each individual node, and 

( ) 2 .
m

k kP k dk m


    Clearly 2 22 ln( / ),ck m K m  � .cK   
Submitting them into (18) yields 
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In order to consider the dependence of network 
size N on c , we have to relate the maximum 
connectivity cK to N . The relation is given by 

1
2

cK mN�  [20], so 
 
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Next, when c  , the stationary state  can be 
obtained as follows: Integrating (17) gives 
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Hence, is a solution to the following algebraic 
equation
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 （20）
   

Obviously, this equation has one and only one 
solution, because the rhs of (20) is smaller than the 
lhs when 0  and the rhs of (20) is larger than the 
lhs when 1  . At the same time, the rhs of (20) is 
a monotonously increasing function of and the 
lhs of (20) is a monotonously decreasing function 
of . In order to obtain an explicit expression of  , 
the following lemma is useful. 
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Its proof is given in [24]. 
Furthermore, we have 
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By (19), applying Lemma 1 to (21) yields 
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where is the solution of (20). 
As shown in Fig.4, the modified SIS model on 

SF networks shows that the epidemic threshold c  
almost disappears for any fixed 1 and 2 . There is 
always a stationary state for any 1 0,  2 0  or 0  . 
This characteristic is consistent with the standard 
SIS model for SF networks. At the same time, one 
can easily find their difference-modified model 
relies on the infectivity between different 1 and 2 . 
 

 
Fig. 4 (Clour online) Densities of infected individuals  (red, dash)  

and v (blue, solid) as functions of the degree tk of immune nodes in a  

scale-free network. 2m , with infected rates 1 2 1,0.8,0.5,0.3     . 

 
Remark. We can easily find that with the increasing 
of the infectivities 1 and 2 , the number of infected 
individuals and that of infected mosquitoes both 
increase. But the number of infected mosquitoes in 
SF models will not go to the 0 equilibrium as in the 
WS models. From a biological point of view, this 
result means that for any infectivities , 1 and 2 , 
the disease will reach some stationary density 
either in humans or in vectors, which is consistent 
with the natural phenomena. On the other hand, it 
also implies that the real world has a prominent SF 
network feature. 

IV.  CONCLUSIONS 

In this paper, we analyze a modified 
susceptible-infected-susceptible (SIS) model with 
an infective vector. In our modified model, 
infective vector is also incorporated. Through 
Analysis in this paper, the vector plays an 
important role in epidemic transmission. The 
standard SIS model represents a more realistic 
situation with the vector added into. And the 
infected individuals are more likely to reach some 
stationary density. It easily shows that, the uniform 
immunization strategy in the modified model is 
more efficient than that used in the previously 
proposed model. Without doubt, the modified SIS 
model researched in this paper has some 
limitations. These and some other related problems 
will be further studied in the near future.  
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