
International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 264

Data Analysis using Mapper and Reducer with
Optimal Configuration in Hadoop

Sasiniveda.G#1, Revathi.N*2
1 PG Scholar, 2Associate Professor

Department of Information technology,
Sri Venkateswara College of Engineering,

Sriperumbudur – 602105, Chennai, INDIA.

Abstract— Data analysis is an important functionality in
cloud computing which allows a huge amount of data to be
processed over very large clusters. Hadoop is a software
framework for large data analysis. It provide a Hadoop
distributed file system for the analysis and transformation
of very large data sets is performed using the MapReduce
paradigm. MapReduce is known as a popular way to hold
data in the cloud environment due to its excellent
scalability and good fault tolerance. Map Reduce is a
programming model widely used for processing large data
sets. Hadoop Distributed File System is designed to stream
those data sets. The Hadoop MapReduce system was often
unfair in its allocation and a dramatic improvement is
achieved through the Elastic Mapper Reducer System.
The proposed Mapper Reducer function allows us to
analyze the data set and achieve better performance in
executing the job by using optimal configuration of
mappers and reducers based on the size of the data sets
and also helps the users to view the status of the job and to
find the error localization of scheduled jobs. This will
efficiently utilize the performance properties of optimized
scheduled jobs. So, the efficiency of the system will result
in substantially lowered system cost, energy usage,
management complexity and increases the performance of
the system.

General Terms- Data analysis, Hadoop, HDFS,
MapReduce Paradigm

Keywords— Cloud Computing, Hadoop Distributed file System,
Performance Paradigm.

I. INTRODUCTION

Cloud computing provides on-demand access to
computational resources which together with pay-per make
use of Production models, facilitate appliance provider
faultlessly scale their services. [11] To unleash the full power
of cloud computing, it is well established that a cloud data
processing system should provide a high degree of elasticity,
scalability, and fault tolerance. Data analysis is an important
functionality in cloud computing which allows a huge amount

of data to be processed over very large clusters.Cloud
computing provides massive clusters for well-organized data
analysis and the huge amount of computation.

MapReduce [5] is a well-known programming model

which was first designed for improving the performance of
large batch jobs on cloud computing systems. This
MapReduce is used for analysing large data sets and its open-
source implementation, called Hadoop, for various types of
jobs.

This leads to sharing a single Hadoop cluster
between [19] multiple users, which run a merge of lengthy
batch jobs and short interactive queries on a shared dataset.
MapReduce is recognized as a possible means to perform
elastic data processing in the cloud [4],[11].There are three
main reasons for this. [11] First, the programming model of
Map Reduce is simple yet expressive. Second, A large number
of data analytical tasks can be expressed as a set of
MapReduce jobs, together with SQL uncertainty, data
withdrawal device learning, and chart processing. MapReduce
achieves the desired elastic scalability through block-level
scheduling and is proven to be highly scalable. Yahoo! has
deploy MapReduce on a 4,000-node crowd together. Third,
MapReduce provides fine-grained fault tolerance whereby
only tasks on failed nodes have to be restarted.

Map-Reduce is a programming model that is used to

analysis the big data in cloud environment and used to retrieve
the data from the hadoop cluster. In this model, processing of
large data is efficient, easy to use, it splits the tasks and
executes on the various nodes in parallel. Thus it will speed up
the computation and retrieve the required data from a huge
data set in a faster manner. We introduce the map-reduce
programming model [13] for analysis the big data in efficient
manner using hadoop. It provides an well-organized data
analysis, performance analysis and executes process in
parallel distributed manner. By using this programming model,
Performance of the system is increased, highly fault tolerant
and scalable. Hardware cost is very low. High throughput
access to application data. It is highly appropriate for the
applications that have large data sets. Easily portable from one
platform to another. The Hadoop Distributed File System

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 265

(HDFS), [8] is a specialized file system to store large amounts
of data across adistributed system of computers with very high
throughput and multiple replications on a cluster. [9] It
provides reliability between the different physical machines to
support a base for very fast computations on a large dataset.
This Mapreduce Originally conceived by Google as a way
of handling the enormous amount of data produced by their
search bots, it has been adapted in a way that it can run on a
cluster of normal commodity machines. This is open source
and distributed by Apache hadoop.

 The rest of the paper is structured as follows: In Section 2
describes the hadoop system model and Section 3 describes
about the modelling of mapreduce paradigm Section 4
describes the programming model of the MapReduce Section
5 and 6 presents the design of the mapreduce application
programming interfacel used in this work. Section 7 presents
the set of experiments and their corresponding results. Finally,
Section 8 and 9 presents conclusion and suggests some future
work.

II. HADOOP SYSTEM MODEL
Hadoop is a free ,Java based programming framework that

supports the processing of large data sets in a distributed
computing environment. It is part of apache project sponsored
by the Apache Software Foundation. The Hadoop framework
is used by major players including [7] Google, Yahoo and IBM,
largely for applications involving search engines and
advertising. Thus the input files that are sending by the client
are stored in the Hadoop distributed file system. HDFS is a
high level architecture which is the storage system used by
Hadoop. This mapreduce programming model[5] is used for
processing large set of data and used to execute the data from
Hadoop. This splits the tasks and executes on the various
nodes simultaneously, thus it speeds up the computation and
retrieves required data from a huge dataset in a fast manner.

Fig. 1 MapReduce System Model
The above figure1 show the mapreduce system model which
allow us to send a query to the hadoop distributed file system
by Client. Thus the Hadoop system consists of HDFS and
MapReduce. The multiple DataNodes that consider as a

Cluster nodes that are in the Amazon EC2 will process the
large data set. In general Hadoop consists of one NameNode
and Multiple DataNodes which indicates data blocks. When a
file is moved to HDFS, it stores them in blocks on the various
nodes in the hadoop cluster. HDFS creates several replications
of the data blocks and distributed them. When execute a query
from a client it will reach out to the NameNode to get the file
metadata information and then it will reach out to the
DataNodes to get the real datablocks. Here we have considered
the 5 nodes cluster in the Amazon cloud. HDFS is highly fault
tolerant and is will run on the low cost hardware.

III. MODELLING OF MAPREDUCE PARADIGM
 In existing system while performing MapReduce operations
it leads to inconvenience for joining the multiple data sets are
tricky and slow, and oftenly the entire data sets gets copied
into the process, so there is no indices. Optimal configuration
of nodes are not obvious. This system does not schedule the
jobs with optimal number of mappers and reducers and does
not perform any tracking or monitoring of the jobs progress,
and this responsibility is left to the individual node. So
Performance of MapReduce programming model is
unpredictable.

A. Data Pipelining

Client writes the input files as a block to the first data node.
The first DataNode forwards the data to the next DataNode in
the Pipeline and the next DataNode forward to all other
DataNode in the cluster, and so on. When all [9] replicas are
written, the Client moves on to write the next block in file.

B. Description of Data Sets

Here we have considered the health care data set and

customer care detail data set. Also we selected wide range of
data sets with varying sizes from kilobytes to gigabytes and
that are used in our experiments. The health care data set
comprises of health details of the customer such as name of
the pills and so on. The customer care detail data set
comprises of network details.

C. Data Segmentation

Before the MapReduce tasks can be debuted, data sets

need to be segmented into chunks. Each chunks are collected
for processing the data sets. The number of splited chunks will
depends on the size of the dataset and the number of nodes
available in the EC2. Users specify a map function that
processes a (key, value) pair to generate a set of intermediate
(key, value) pairs, and a reduce function that merges all
intermediate values associated with the same intermediate key.
There are separate Map and Reduce steps. Each step done in
parallel on sets of (key, value) pairs [5], [10].Thus, program
execution is divided into a Map and a Reduce stage, separated
by data transfer between nodes in the cluster.[16] The Map
stage takes in a function and a section of data values as input

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 266

applies the function to each value in the input set and
generates an output set. The Map output is a set of records in
the form of (key, value) pairs stored on that node. The records
for any given key could be spread across many nodes. The
framework, then, sorts the outputs from the Map functions and
inputs them into a Reducer [9] , [16] ,[17]. If any of the nodes
fails in the hadoop environment, it will still come again the
dataset accurately, as hadoop takes care of replicating and
distributing the data efficiently across the multiple nodes.

IV. HADOOP DISRIBUTED FILE SYSTEM
It is a high level architecture which is the storage system

used by Hadoop. When you dump a file (or data) into the
HDFS, it supplies them in block on the various nodes in the
hadoop cluster. HDFS creates several replications of the data
blocks and distributes them accordingly in the cluster in way
that will be reliable and can be retrieved faster. [10] A usual
HDFS block range is 128MB. Each and all data block is
simulated to multiple nodes across the cluster. Hadoop will
internally make sure that any node failure will never results in
a data loss. When you implement a query from a customer, it
will enter at to the NameNode to get the file information, and
then it will reach out to the DataNodes to get the real data
blocks Hadoop provides a command line interface for
administrators to work on HDFS.

A. MapReduce Programming Model

 MapReduce is a parallel programming model for
processing large set of data and used to retrieve the data from
the Hadoop. This splits the tasks and executes on the various
nodes parallel, thus it speed up the computation and retrieve
required data from a huge dataset in a fast manner. This
provides a clear abstraction for programmers. It has two
functions Map and Reduce. The data are fed into the map
function as key value pairs to produce intermediate key/value
pairs .Once the mapping is done, all the intermediate results
from various nodes are reduced to create the final output. Job
Tracker keeps track of all the MapReduces jobs that are
running on nodes. This schedules the jobs, keeps track of all
the map and reduce jobs running across the nodes. If any one
of those jobs fail, it reallocates the job to a different node.
Task Tracker performs the map and reduce tasks that are
assigned by the Job Tracker.

"Map" step: The master node takes the input, divide
it into lesser sub-problems, and distributes them to worker
nodes. [1] A worker node may do this yet again in turn, chief
to a multi-level tree structure. The worker node process the
less important problem, and passes the answer back to its
master node.

"Reduce" step: The master node then [1] collects
the answers to all the sub-problems and combines them in
some way to form the output.

B. Elastic MapReduce system

 A typical MapReduce computation processes many
terabytes of data on thousands of machines. MapReduce
typically split the input dataset into self-determining chunks.
The number of splits depends on the size of the dataset and the
number of nodes available. Users specify a map function that
processes a (key, value) pair to generate a set of intermediate
(key, value) pairs, and a reduce function that merges all
intermediate values associated with the same intermediate key.
There are separate Map and Reduce steps. Each step done in
parallel on sets of (key, value) pairs. Thus, program execution
is divided into a Map and a Reduce stage, separated by data
transfer between nodes in the cluster.

 The Map stage takes in a function and a section of data
values as input, applies the function to each value in the input
set and generates an output set. The Map output is a set of
records in the form of (key, value) pairs stored on that
node.[17] The records for any given key could be spread
across many nodes. The framework, then, sorts the outputs
from the Map functions and inputs them into a Reducer. This
involves data transfer between the Mappers and the Reducer.
The values are aggregated at the node running the Reducer for
that key. The Reduce stage produces another set of (key, value)
pairs as final output. The Reduce stage can only start when all
the data from the Map stage is transferred to the appropriate
machine. MapReduce requires the input as a (key, value) pair
that can be serialized and therefore, restricted to tasks and
algorithms that use (key,value) pairs.
 The MapReduce framework has a single master Job
Tracker and multiple Task Trackers. Potentially, each node in
the cluster can be a slave Task Tracker. The master manages
the partitioning of input data, scheduling of tasks, machine
failures, reassignment of failed tasks, inter-machine
communications and monitoring the task status. The slaves
execute the tasks assigned by the master.[12] Both input and
output are stored in the file-system. The single JobTracker can
be a single point failure in this framework. MapReduce is best
suited to deal with large datasets and therefore ideal for
mining large datasets of petabytes size that do not t into a
physical memory. Most common use of MapReduce is for
tasks of additive nature. However, we can tweak it to suit
other tasks.

Fig. 2 Elastic Mapreduce Model

MapReduce is a simple and powerful programming model that

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 267

enables easy development of scalable parallel applications to
process the vast amount of data on the commodity
machines. In this model The computation takes a set of input
key/value pairs and produces a set of output key/value pairs.
For optimal configuration, the elastic Mapper Reducer System
is used and improves the performance of the scheduled jobs.
The Map phase takes a key-value pair generated through the
Input Split. Each node runs one map task and is run parallel
with each other. One Map task takes a key-value pair, process
it and generates another key-value pair.

V. MAPPER API
 For optimal configuration, the Elastic Mapper Reducer is
used to schedule the jobs efficiently.HDFS creates a several
replication of the data blocks and distributes them. In Map
function the Jobtracker takes the input, divides it into smaller
sub-problems and distributes them to Tasktracker [9]. The
MapReduce framework operates exclusively on <key,
value> pairs. Map function takes input as Key/Value pairs
where Key is reference to the input values and Value is data
set on which to operate the particular node. Internally this file
is split into one or more block. Hadoop provides a command
line interface to work on HDFS.

 Map (Key1,Value1) ---> emit

(Key2,Value2)
 Reduce (Key2,Value2_list) ---> emit

(Key2,aggregated_Value2)
 Combine (Key2,Value2_list) ---> emit

(Key2,combined_Value2)
 Partition (key2) return reducer No

Each MapReduce job is split into tasks that comprise
sequences of key-value pairs. For each task, we create a
mapper object, which calls the map method for each key-value
pair and this function is applied in parallel to every pair in the
input data set [10]. The below graph shows the performance
of mapreduce. Thus, figure 3 Graph shows for the various
optimal configuration of Mapper and Reducer. This is plotted
between the Number of Tasks and Time.

Fig. 3 Map/Redeuce Task Completion Graph

This produces a list of call for pair of each call. After that
mapreduce framework collect all pairs with the sane key from
the entire list and group them together. Thus it will create a

one group with different keys. Then the reduce function is
also applied parallely in each group which in turn produces a
collection of values in the same domain. Each reduce call
typically produce either one value or empty return. By using
this We provide an efficient data analysis, and it improves
the performance by executing the process in a distributed or in
parallel manner.

VI. REDUCER API
 The Tasktracker then collects the answers to all the sub-
problems and combines them to form the output. The reduce
function is then applied in parallel to each group for each one
of the different generated keys. Reduce function starts with
intermediate Key/Value pairs and ends with finalized
Key/Value pairs.

TABLE I
PARAMETER RECEIVED BY MAPREDUCE

Parameter
Received

Map
(Bytes)

Reduce
 (Bytes)

File Bytes Read 0 543
HDFS Bytes Read 433 0

File Bytes Written 22,265 22,234

HDFS Bytes Read 0 365

CPU Time(ms) 200 980

 Each of the jobs scheduled and produces a job id. This
shows the status and the information parameters that are
received from the TaskTracker. Thus, optimal configuration
of Elastic Mapper Reducer gives some parameter such as
Bytes read, Bytes written, CPU time, Memory limit, Dead
nodes, Live nodes, Data size, Communication delay etc..,This
will also show the status of the Namenode ang gives the
information about the Heap size, Capacity of the node and
also details of the Live nodes and Dead nodes.

VII. ADVANTAGE
 The performance of the Elastic Mapper Reducer is
achieved by using the optimal configuration by scheduled
jobs. It provides the fine grain fault tolerance, so only the
tasks on the failed nodes have to be restarted. Elastic Mapper
Reducer function allows us to analyze the metadata set and
achieve better performance in executing the job by using
optimal number of mappers and reducer based on the size of
the data sets and also helps the users to view the status of the
job and to find the error localization of scheduled jobs. This
will efficiently utilize the performance properties of optimized
scheduled jobs. So, the efficiency of the system will result in
substantially lowered system cost, energy usage, and
management complexity it increases the performance of the
system.

International Journal of Computer Trends and Technology- volume4Issue3- 2013

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 268

VIII. CONCLUSION
 Elastic MapReduce programming model is performed
efficiently for processing complex data sets. Thus optimal
configuration of Mappers and Reducers are Performed based
on the size of the data sets. This provides the information
about the parameters that are received from the scheduled jobs.
So, the efficiency of the system will result in substantially
lowered system cost, energy usage, and management
complexity it increases the performance of the system. This
improves the overall system performance, efficiency and
scalability. If any one of those jobs fails, it reallocates the job
to another node and process the data in efficient Manner.

IX. FUTURE WORK
This design is enhanced by considering the Mean

shift clustering Model for the desired data set and is used to
show the Elastic MapReduce programming model efficiently
and its better performance will be evaluated and enhanced
MapReduce system will be deployed in cloud as a service
which can be used by the user across the world.

REFERENCES
[1] Apache,“Hadoop,”

http://hadoop.apache.org/docs/r0.20.2/hdfs_design.html
[2] D. Comaniciu and P. Meer. Mean shift: A robust

approach toward feature space analysis. IEEE Trans.
Pattern Anal. Machine Intell., 24:603–619, 2002.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System,” Proc. 19th ACM Symp. Operating
Systems Principles, 2003.

[4] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D.
Stott Parker. Map-reduce-merge: simplified relational
data processing on large clusters.In SIGMOD ’07:
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 1029–1040,
New York, NY, USA, 2007. ACM.

[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I.
Stoica. Improving MapReduce Performance in
Heterogeneous Environments. In OSDI, USENIX
Symposium on Operating System design and
Implementation pp.1-16August

[6] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data
Processing on Large Clusters,” Comm. ACM, vol. 51, no.
1, pp. 107-113,December 2008.

[7] Hadoop, http://lucene.apache.org/hadoop
[8] Amazon Elastic Compute Cloud,

http://aws.amazon.com/ec2
[9] Konstantin Shvachko,” The Hadoop Distributed File

System”, Yahoo-Inc.com.
[10] T. Sun, C. Shu, F. Li, H. Yu, L. Ma, Y. Fang, An

efficient hierarchical clustering method for large datasets
with map-reduce, in: PDCAT’09: International
Conference on Parallel and Distributed Computing,
Applications and Technologies, IEEE Computer Society,
Washington, DC, USA, 2009, pp. 494-499.

[11] Matei Zaharia, Dhruba Borthakur, Job Scheduling for
Multi-User MapReduce Clusters Electrical Engineering
and Computer SciencesUniversity of California at
Berkeley April 30, 2009.

[12] D. Jiang et al. Map-join-reduce: Towards scalable and
efficient data analysis on large clusters. IEEE
Transactions on Knowledge and Data Engineering, 2010.

[13] D. Jiang et al . The performance of mapreduce: An in-
depth study. Proceedings of the VLDB Endowment,3(1-
2):pp 472–483, 2010

[14] M. Elteir, H. Lin, W. chun Feng, Enhancing mapreduce
via asynchronous data processing, in: ICPADS’10: IEEE
16th International Conference on Parallel and
Distributed Systems, 2010, pp. 397-405.

[15] Mr. Yogesh Pingle, Vaibhav Kohli, Shruti Kamat,
Nimesh Poladia Big Data Processing using Apache
Hadoop in Cloud System International Journal of
Engineering Research and Applications (IJERA) ISSN:
2248-9622.

[16] F.N. Afrati and J.D. Ullman, Optimizing Joins in a
Map-Reduce Environment, Proc. 13th Int’l Conf.
Extending Database Technology (EDBT ’10), 2010.

[17] Y. Bu, B. Howe, M. Balazinska, and M. Ernst, “Hadoop:
Efficient Iterative Data Processing on Large Clusters,”
Proc. VLDB Endowment, vol. 3, no. 1/2, pp. 285-296,
2010.

[18] Foto N. Afrati and Jeffrey D. Ullman, Optimizing
Multiway Joins in a Map-Reduce Environment IEEE
Transactions on knowledge and data Engineering, VOL.
23, NO. 9, September 2011.

[19] Indranil Palit and Chandan K. Reddy, Scalable and
Parallel Boosting with MapReduce IEEE Transactions
on knowledge and data Engineering, VOL. 24, NO. 10,
October 2012.

