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Abstract— PACMA (Parallelized Adaptive Cipher with Modular 

Arithmetic) is a Symmetric Cryptographic Algorithm designed 

with traditional techniques to efficiently utilize the parallel 

processing capabilities of modern computing systems. It 

overcomes the performance inconsistencies prevalent in 

conventional cryptographic algorithms when they are 

implemented in different computing systems with different 

processing capabilities. The size of the key and the plain text 

blocks are each 1024-bits. The adaptive nature of this algorithm 

is achieved by incorporating flexibility in the size of the key and 

plain text sub-blocks and the number of rounds. Level of Intra-

packet parallelization, variety in grain size and the required 

security strength are achieved by suitably deciding the sub-block 

size. Flow of the algorithm is made dynamic by determining the 

execution steps through each key value at runtime. In spite of 

these advantages the ECB mode implementation of PACMA 

always produces the same cipher text block for a particular plain 

text block when the same key is used. CBC and Interleaved CBC 

modes with 2-way and 4-way interleaving are employed to 

alleviate this problem. The performance of the PACMA in ECB, 

CBC and Interleaved CBC modes are analyzed with 

implementations in shared memory parallel programming 

environment using OpenMP, Java Threads and MPI. 

 
Keywords : Symmetric Block Cipher, Parallel Adaptive 

Cryptography, CBC, Interleaved CBC, Modular Arithmetic. 

 

I. INTRODUCTION 

Traditional cryptographic algorithms focus only 

on the complexity of the algorithm and the strength 

and the secrecy of the key [1]. We face variety of 

challenges in efficiently implementing these crypto 

systems as new trends and technologies have crept 

into modern communication and computing 

systems. Conventional symmetric cryptographic 

algorithms such as DES, IDEA, RC6, Blowfish and 

AES are developed before the year 2000 when 

computers were built around single 32, 16 or even 8 

bits processors. But now, Cryptographic algorithms 

can be executed much faster on modern computers. 

The present day computing systems and that of 

future are not that of single core 32-bits desktops, 

but of multi-cored chips and multiprocessor 

machines whose processing capacities are 64 or 128 

or more bits. Parallelizing the cryptographic 

algorithms is the only means to utilize these 

systems productively [2].  

 

Further, there is a sharp increase in the rate of 

encryptions and decryptions carried out per unit 

time as the amount of information passing through 

communication networks have increased 

exponentially. This imposes additional overhead in 

the information exchange and may cause 

congestion. A way out of this trouble is to develop a 

new class of parallel cryptographic algorithms that 

can reduce the time required for encryption and 

decryption without diminishing the security 

strength using parallel execution techniques. 

 

Addition and multiplication modulo operations 

are reversible and they are efficiently involved in 

cryptography. The binary coded value of the plain 

text is added or multiplied with the key, which is a 

member of the set of residues „Zm‟ to yield a sum or 

product value. When the value obtained is divided 

with „m‟ yields a remainder, which is the resultant 

cipher text. Similarly the plain text can be retrieved 

by performing the same operation with the cipher 

text and the additive or multiplicative inverse value 

of the key used[3],[4]. 

 Adaptive Cryptography is a trend, which deals 

with attaining flexibility in the cryptographic 

algorithms by dynamically varying the algorithmic 

flow and the choice of the key and the plain-text 
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sub-blocks. Adaptive nature of these Cryptographic 

Algorithms can be classified as (i) Inter-Algorithmic 

Adaptation and (ii) Intra-Algorithmic Adaptation. 

Inter-Algorithmic Adaptation is achieved by 

employing different algorithms [5], whereas Intra-

Algorithmic Adaptation instills dynamism within 

the same algorithm. Intra-Algorithmic Adaptation is 

employed in this work. 

 

Parallel Cryptography is a recent development, 

which deals with implementation of cryptographic 

algorithms in modern parallel computing 

environments. Parallelism accelerates processing by 

simultaneous execution of multiple tasks. Implicit 

parallelism is achieved by the inherent resources 

and techniques in the processing hardware. Explicit 

parallelism is extracted by the external 

arrangements and codes by utilizing the available 

parallel hardware resources efficiently. Techniques 

used for explicit parallelism can be categorized as  

(i) Per-Connection Parallelism (ii) Per-Packet 

Parallelism and (iii) Intra-Packet Parallelism. 

 

Per-connection parallelism is a method in which 

each connection is given its own thread or process 

that runs exclusively on one processor. This is the 

most common method of parallelization, and 

requires no modification to the existing algorithm 

or the software implementation. The per-connection 

parallelization method makes no attempt to fully 

utilize modern architectures. In Per-packet 

parallelism connections disperse their packet 

processing load over multiple processors, wherein 

each packet is treated individually. Many current 

algorithms lend themselves well to this kind of 

parallelization, but, no cryptographic software 

implementing this per-packet parallelism is 

available. Intra-packet parallelism is the most 

difficult type of parallelism, as it depends on 

algorithm design. It also requires changes in the 

implementation of the cryptographic algorithm, 

depending no longer on the flexibility of the 

hardware or operating system upon which it is run 

[2], [6]. Intra-packet parallelism is employed in 

PACMA. 

 

This paper is designed as follows. section II gives 

the related works, section III depicts the PACMA 

Cryptographic Algorithm and its ECB 

implementation, section IV deals with the CBC 

implementations of PACMA, section V deals with 

the Interleaved CBC implementation of PACMA, 

and Section VI concludes the paper. 
 

II. RELATED WORKS 

 Efforts to parallelize existing cryptographic 

algorithms have been pursued by several 

researchers from year 2000 onward. The prominent 

of these efforts can be classified broadly as 

Hardware or Software Parallel Cryptographic 

Implementations involving several technical 

approaches beneath them as depicted in Fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1: Classification of Parallel Implementation of  

Cryptographic Algorithms 

 

Design and implementation of a crypto 

processor by HoWon Kim et al, introduced a 

special-purpose microprocessor optimized for the 

execution of cryptography algorithms. The crypto 

processor consists of a 32-bit RISC processor block 

and a coprocessor block dedicated to the SEED and 

Triple-DES algorithms [7]. Pionteck et al, in their 

work presented a hardware design of AES with 

reconfigurable encryption/decryption engines which 

supports all key lengths. The reconfigurable crypt-

engine is integrated in a 32 bit RISC processor as a 

functional unit and can operate in parallel with the 

standard ALU. The Reconfigurable Cryptographic 

Unit (RCU) is integrated into a 32 bit five stage 
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pipeline RISC Processor and the area which is used 

for the RCU is less than 27% of the total area [8]. 

 

An Application-Specific Integrated Circuit 

(ASIC) is an Integrated Circuit (IC) customized for 

a particular use, rather than intended for general-

purpose use. When ASICs are used to implement 

cryptographic algorithms it provides robust 

operation and much of the overhead involved in 

hardware implementation is reduced. The works 

carried out on ASIC implementation of DES, 

3DES, IDEA and all the round 2 candidates of AES 

by S.Mukherjee et al., T.Ichikawa et al., and 

B.Weeks et al., are prominent in this category[9]-

[11]. 
 

 Field Programmable Gate Array (FPGA) 

logic cells are reconfigurable platforms that provide 

relatively a low cost, high performance method of 

implementing cryptographic primitives. Several 

standard algorithms such as DES, Triple DES, and 

AES are parallelized using FPGAs by Swankoski et 

al. [12]. The implementation environment is 

composed of Virtex-II Pro, FPGA Platform with 

Verilog HDL and Block RAM resources. Another 

hardware design of AES in chip proposed by 

Kotturi, et al., uses hierarchical simultaneous key 

generation, is implemented with ten separate units 

in XC2VP70 device with speed grade -7 with 

Virtex II Pro FPGA. Each unit can execute one 

round of the algorithm and ten rounds of the 

algorithm can be executed in parallel in a chip using 

external pipelined design. The throughput rate 

achieved in this method is higher than most other 

implementations [13]. In yet another 

implementation by Chi-Wu, et al, 128-bit AES was 

decomposed into four 32-bit AES to be executed in 

parallel. This outperformed all other recent works 

by requiring less than 20% reconfigurable area and 

operated four times faster than 32-bit AES by 

providing double the throughput [14]. 
 

Microprocessors with multiple cores and 

Graphical Processing Units (GPUs) are widely 

available at affordable prices. Considering the 

computational demands of the cryptographic 

algorithms, these parallel platforms are relevant to 

parallelize the existing algorithms to enhance the 

performance. CUDA programming is used to 

parallelize the algorithms in GPU [15], [16]. 

OpenMP is used to extract parallelism from Multi-

Core Processors [17]. 
 

Praveen Dongara et al. parallelized several 

prominent private-key cryptographic algorithms 

such as 3DES, IDEA, Twofish, RC4, Rijndael, 

Blowfish, RC6, MARS and RC4. They yielded 

better performance in ECB and mode through 

multithreading on symmetric multiprocessors. As 

ECB implementations produced same cipher text 

for a given plain text always, CBC and Interleaved 

CBC implementations were verified [18]. Similar 

works with CBC and Interleaved CBC modes were 

carried out on AES by Zadia Codabux-Rossan et al. 

[19] and Ashokkumar et al. [20]  

 

Considering the fact that the most time-

consuming elements of source code of 

cryptographic algorithms without including the I/O 

functions are loops, they are parallelized for all the 

popular cryptographic algorithms such as DES, 

Triple DES, IDEA, AES, RC5, Blowfish, GOST 

and LOK191 by Bielecki et al. The standard modes 

of operations selected for Ciphers are ECB, CBC, 

CFB, OFB and CTR. The Data Dependences are 

resolved before parallelizing the Loops. OpenMP 

was used to parallelize the loops in these algorithms 

and Petit was used to resolve dependences in the 

loops. Speedup measurements were presented for 

all these implementations [21], [22]. 
 

Even though all the efforts to parallelize the 

existing conventional cryptographic algorithms 

with hardware and software techniques had given 

better results, they cannot be fully parallelized or 

implemented efficiently in present day computing 

systems. The dependency problems and the 

inability to efficiently modularize the sections of 

the algorithms hover around and haunt the 

parallelization. Thus a path for the new class of 

cryptographic algorithms that is devoid of these 

problems is set in. 
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III. PARALLEL ADAPTIVE CIPHER WITH MODULAR 

ARITHMETIC (PACMA) 

In our previous work we have developed the 
Parallel Adaptive Cipher with Modular Arithmetic 
(PACMA) and implemented in ECB mode [23]. 
PACMA is a symmetric block cipher with the block 
length and the key size each of 1024 bits. The sub-
block size of the key and the plain text is made 
adaptive by varying them suitably based on the 
processing capacity of the computing system used. 
The behavior of the algorithm is decided 
dynamically by deriving the control information 
from the key. The granularity of the algorithm is 
decided by forming sub-blocks of various sizes in 
the range 2

n
 where n=3 to 8. The processing 

resources available and the security strength 
required are used to decide the number of rounds, 
size of the key and the plaintext sub-blocks. This is 
depicted in Fig 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. General Block Diagram of PACMA 

Each round in PACMA has eight stages as 
depicted in fig 3. The 1024 bit key is directly used 
in the first stage but it undergoes different 
transformations in the remaining stages. The sub-
block generation routine is run to generate the key 
and the plain text sub-blocks; before they are 
involved in operations at each stage. In the first 
stage modulo addition operation is performed with 
the key sub-blocks and the plain text sub-blocks in a 
pattern decided by the initial and the final bits of the 
key. If both these bits are of same value then 
modulo addition operation is performed directly, 
otherwise the plain text bits are reversed before the 
operation. The key bits are then rotated to right or 

left by b/2 positions within the key sub-blocks so 
that it can be used in the next stage. Here „b‟ refers 
to the number of bits in each key sub-block. The 
direction of rotation is determined by the parity of 
the key. If the parity is odd the bits are rotated to the 
right, otherwise they are rotated to the left. 

In the second stage addition modulo 2
8
 operation 

is carried out with each key and plain text sub-
blocks. If the sub-block size is greater than 8 bits, 
the key and the plain text sub-blocks are further 
divided into chunks of 8 bits in this stage to 
facilitate the addition modulo 2

8
 operation. 

Following this exchange manipulation is carried out 
between the key sub-blocks. This is achieved by 
swapping the odd numbered sub-blocks with the 
next higher order even numbered sub-blocks. In the 
third stage, multiplication modulo 2

8
+1 operation is 

carried out on the 8 bit chunks of the key and the 
plain text that are available after the second stage. 
Intra sub-block rotation is then carried out for each 8 
bit chunk of key sub-blocks as it was done before 
the second stage.  

In the fourth stage addition modulo 2
16

 operation 
is performed with the key sub-blocks and the plain 
text sub-blocks after dividing or grouping them into 
chunks of 16 bits. An inter sub-block rotation is 
performed for the key as it is done before the fifth 
stage. The position for rotation is derived from the 
value given by the first ten bits of the key block. 
The direction of rotation is specified by the eleventh 
bit of the key block. If the value of the eleventh bit 
is „1‟the key bits are rotated to the right and if it is 
„0‟ then it is rotated to the left. Multiplication 
modulo 2

16
+1 operation is carried out after further 

dividing or grouping the key and plain text sub-
blocks into chunks of 16 bits in the fifth stage. The 
key manipulation is then performed with the 16 bit 
chunks of the key as it is done before the fourth 
stage for 8 bits chunks. 

The operation in the second state is repeated for 
the sixth stage. The key sub-blocks then undergo an 
exchange key manipulation by swapping the sub-
blocks at the extreme ends. The inner sub-blocks at 
the next level are then swapped and this is carried 
towards the sub-blocks in the central position of the 
key. The operation performed in the third stage is 
repeated in the seventh stage. The key bits then 
experience the Intra sub-block rotation similar to the 
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first key manipulation operation and then they are 
utilized for modulo addition operation in the eighth 
stage. Brief algorithmic depiction of PACMA with 
single round can be given as follows: 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Stages in each round of PACMA 

 

Input : 1024 bit plain text block 

Output : 1024 bit cipher text block 

Sub-Block Generation: 

1. Run environment identification routine to identify the 

number of processors/cores „p‟, their data handling 

capacities „c‟ and clock speed „s‟ to divide the 1024 bits 

key and the 1024 bits plain text into sub-blocks of „b‟ bits. 

2. if p==1 && c < 16 bits && s ≤ 10 MHz then b 

3. else if p==1 && c ≥ 16 bits && c < 32 bits && s > 10 

MHz && s ≤ 100 MHz then b = 16 bits. 

4. else if p==1 && c ≥ 32 bits && c < 64 bits && s > 

100MHz && s ≤ 1000 MHz then b = 32 bits. 
5. else if p≤4 && c≥64 bits && s > 1GHz then b=64 bits. 

6. else if p>4 c ≥ 64 bits && s > 3GHz then b=256 bits 

7. else display “resources unsuitable to implement 

PACMA”. 

 
Steps in Single Round of PACMA : 

1.  Modulo addition with key and plain text sub-blocks. 

2.  Intra sub-block rotation on key sub-blocks. 

3.  Addition modulo 28 with key and plaintext sub-blocks. 

4.  Exchange sub-block operation on key sub-blocks. 

5.  Multiplication modulo 28+1 with key and plaintext sub-

blocks. 

6.  Intra sub-block rotation on chunks of key sub-blocks. 
7.  Addition modulo 216 with key and plaintext sub-blocks. 

8.  Inter sub-block rotation on key sub-blocks. 

9.  Multiplication modulo 216+1 with key and plaintext sub-

blocks. 

10.  Intra sub-block rotation on chunks of key sub-blocks. 

11.  Addition modulo 2
8
 with key and plaintext sub-blocks. 

12.  Exchange sub-block operation on key sub-blocks. 

13.  Multiplication modulo 28+1 with key and plaintext sub-

blocks. 
14.  Intra sub-block rotation on key sub-blocks. 

15.  Modulo addition with key and plaintext sub-blocks. 
 

 PACMA is implemented in shared memory 
computing system with multi-core architecture with 
four cores using MPI, OpenMP and Java Thread 
programming with different sub-block sizes and 
compared with the sequential results. The speedup 
of various combinations of executions in ECB mode 
are analyzed and compared and the results are given 
in Table I. 

TABLE I 

ECB MODE IMPLEMENTATION OF PACMA (ONE ROUND) 

SUB-BLOCK 
SIZE 

PACMA - SPEEDUP IN ECB MODE 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 2.85 2.89 2.33 2.38 2.18 2.22 

16 bits 3.42 3.47 2.57 2.63 2.41 2.46 

32 bits 3.54 3.62 2.96 3.02 2.75 2.81 

64 bits 3.61 3.68 3.37 3.43 3.17 3.22 

128 bits 3.83 3.89 3.72 3.68 3.56 3.61 

256 bits 3.86 3.94 3.81 3.88 3.74 3.79 

 

ECB Mode: Electronic Code Book Mode 

ENC : Encryption   DEC : Decryption 

 

 The performance of cryptographic algorithms in 
parallel computing environment can be indicated 
using speedup. Speedup is the ratio of the time taken 
by the serial implementation of the algorithm to that 
of its parallel implementation and is denoted by  
Sp = Ts/Tp. Where „p‟ denotes the parallel 
implementation with p number of processors or 
cores and „s‟ denotes its sequential implementation. 

 All the parallel implementations provided similar 
variation in their output. When the sub-block size is 
kept small the speedup is low, but it gradually 
increased linearly when the sub-block size is 
increased. The decryption process provided better 
speedup than the encryption process because most 
of the values and the decisions computed for the 
encryption stages are made available to the 
decryption stages. A comparative representation of 
the performance of encryption algorithm using MPI, 
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OpenMP and Java threads are shown in Fig. 4 and 
that of the decryption algorithm is shown in Fig 5. 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Performance of ECB mode Encryption of PACMA 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Performance of ECB mode Decryption of PACMA 

 

IV. CBC MODE IMPLEMENTATION OF PACMA 

In ECB mode of PACMA, a plain text block 

always produces the same cipher text block, when 

the same key is used. Cipher Block Chaining (CBC) 

mode is used to overcome this problem. CBC mode 

ensures that even if the same plain text block is 

repeated again and again it yield totally different 

cipher text blocks in the output. In CBC mode 

result of the encryption of the previous block are 

fed back into the encryption of the current block. 

As there is no feedback available for the first block 

of the plaintext a random block of text known as 

Initialization Vector (IV) is used in the first step of 

encryption. The encryption process in CBC mode is 

shown in Fig. 6 and the decryption process in Fig. 7. 

 

 

 

 

 

 

 
 

 
 

 

 

 
 

Fig. 6: CBC mode Encryption of PACMA 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 7: CBC mode Decryption of PACMA 

 

The decryption is just the reverse of the encryption, 

except the feedback of the previous level is readily 

available in decryption, whereas in encryption it is 

not. The speedup results of CBC mode 

implementation of PACMA in MPI, OpenMP and 

Java Threads are given in Table II. 
 

TABLE II 

CBC MODE IMPLEMENTATION OF PACMA (ONE ROUND) 

SUB-BLOCK 

SIZE 

PACMA - SPEEDUP IN CBC MODE 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 1.28 2.71 1.14 2.21 1.12 2.04 

16 bits 1.49 3.31 1.31 2.46 1.25 2.27 

32 bits 1.62 3.48 1.52 2.87 1.44 2.70 

64 bits 1.66 3.52 1.61 3.31 1.60 3.09 

128 bits 1.85 3.72 1.82 3.57 1.74 3.48 

256 bits 1.97 3.78 1.94 3.76 1.89 3.64 

 

CBC Mode : Cipher Block Chaining Mode 

ENC : Encryption   DEC : Decryption 
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The performance of CBC mode encryption of 

PACMA is drastically reduced because of the 

dependencies caused by feedback of the ciphertext 

to the next level. The decryption is not affected as 

the feedback to the next level is readily available. 

The encryption and decryption performance graphs 

of CBC mode PACMA is given in Fig. 8 and Fig. 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8: Performance of CBC mode Encryption of PACMA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Performance of CBC mode Decryption of PACMA 

 

V. INTERLEAVED CBC MODE IMPLEMENTATION OF 

PACMA 

The encryption in CBC mode depends on the 

encryption of the previous sub-blocks. This makes 

it difficult to parallelize encryption. The only 

solution to this problem is to interleave multiple 

encryption blocks [24]. Interleaving can be done in  

n-ways, wherein the two-way and four-way 

interleaving are adopted in this work. 

A. Two-Way Interleaved CBC mode of PACMA 

Two-Way interleaving is the next immediate 

improvement to the CBC implementation. In two-

way interleaving the output of the first encryption 

sub-block is feedback to the third and that of second 

to fourth and so on. In this case two Initialization 

Vectors are required to start the encryption and the 

decryption processes. The structure of two-way 

interleaving for encryption is shown in Fig. 10 and 

that of decryption in Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10: Two-Way Interleaved CBC mode Encryption of PACMA 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
Fig. 10: Two-Way Interleaved CBC mode Decryption of PACMA 

 

The decryption process in this case too is just 

the reverse of the encryption process. The feedback 

ciphertext of the previous level is also readily 

available in each block of decryption, whereas in 

encryption it is not so. The speedup results of  

two-way interleaved CBC mode implementation of 

PACMA in MPI, OpenMP and Java Threads are 

given in Table III. 
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TABLE III 

2-WAY IMPLEMENTATION OF ICBC MODE PACMA (ONE ROUND) 

SUB-BLOCK 
SIZE 

PACMA - SPEEDUP IN 2-WAY ICBC MODE 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 1.73 2.73 1.44 2.24 1.32 2.07 

16 bits 2.18 3.32 1.59 2.49 1.49 2.30 

32 bits 2.33 3.50 1.89 2.89 1.76 2.72 

64 bits 2.45 3.54 2.22 3.34 2.06 3.12 

128 bits 2.64 3.74 2.49 3.59 2.34 3.50 

256 bits 2.70 3.80 2.58 3.78 2.53 3.66 

 

ICBC Mode : Interleaved Cipher Block Chaining Mode 

ENC : Encryption   DEC : Decryption 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Fig. 12: Performance of 2-Way ICBC mode Encryption of PACMA 

 

The performance of two-way interleaved 

CBC implementation is found to be better than the 

CBC implementation and it is illustrated in Fig. 12 

and Fig. 13. The additional processes or threads that 

handle the two-ways of encryption and decryption 

separately are responsible for this enhancement. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 13:  Performance of 2-Way ICBC mode Decryption of PACMA 
 

B. Four-Way Interleaved CBC mode of PACMA 

In four-way interleaving the output of the first 

encryption sub-block is feedback to the fifth and 

that of second to sixth, third to seventh, fourth to 

eighth and so on. In this case four Initialization 

Vectors are required to start the encryption and the 

decryption processes. The structure of four-way 

interleaving for encryption is shown in Fig. 13 and 

that of decryption in Fig. 14. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 13: Four-Way Interleaved CBC mode Encryption of PACMA 
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Fig. 14: Four-Way Interleaved CBC mode Decryption of PACMA 
 

A considerable improvement is seen in the performance of 

four-way interleaved CBC mode implementation of PACMA 

when compared with the simple CBC and two-way 

Interleaved CBC modes. This is shown in Table IV and in Fig. 

15 and Fig. 16. 
 

TABLE IV 

4-WAY IMPLEMENTATION OF ICBC MODE PACMA (ONE ROUND) 

SUB-BLOCK 
SIZE 

PACMA - SPEEDUP IN 4-WAY ICBC MODE 

MPI OpenMP JAVA Threads 

ENC DEC ENC DEC ENC DEC 

8 bits 1.98 2.77 1.63 2.26 1.54 2.10 

16 bits 2.46 3.36 1.86 2.52 1.76 2.34 

32 bits 2.58 3.54 2.16 2.92 2.05 2.72 

64 bits 2.67 3.56 2.49 3.36 2.36 3.15 

128 bits 2.91 3.77 2.78 3.62 2.67 3.53 

256 bits 2.97 3.83 2.89 3.80 2.78 3.69 

 

ICBC Mode : Cipher Block Chaining Mode 

ENC : Encryption   DEC : Decryption 
 

 

 

 

 

 

 

 

 
 

VI. CONCLUSION 

 

Fig. 15: Performance of 4-Way ICBC mode Encryption of PACMA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 16: Performance of 4-Way ICBC mode Decryption of PACMA. 
 

Increasing the level of the interleaved CBC mode 

enhances the parallel performance, but it also 

increases the number of Initialization Vectors 

required and the complexity of implementations. 

Even though the encryptions are made to perform 

better, it cannot be enhanced like ECB mode 

implementations due to the dependency issues 

involved with the feedback of the ciphertext from 

the previous stage. The decryption processes does 

not suffer such drawbacks and they perform well in 

parallel executions, as the ciphertext of the previous 

stage is available well in advance before the 

beginning of the process in the current level. 
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VI. CONCLUSION 

 

 The advantages of PACMA are its adaptive 

nature, its ability to run on different parallel 

computing architectures efficiently, its flexibility in 

deciding the size of the key and plain text sub-

blocks and its ability to expand by suitably deciding 

the number of rounds. The security level of 

PACMA is very strong as key size and plaintext 

block size are each 1024 bits. When executed in 

parallel computing environments the performance 

of ECB mode is found to be better. But it always 

produces the same ciphertext for a particular 

plaintext when the same key is used. Although CBC 

mode is employed to alleviate this problem, its 

decryptions support parallelization, whereas its 

encryptions do not. The issue faced in 

parallelization of CBC mode encryptions is solved 

to some extent with two-way and four way 

Interleaved CBC implementations. 
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