
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3724

CBC And Interleaved CBC Implementations Of

PACMA Cryptographic Algorithm
J. John Raybin Jose

#1
, E. George Dharma Prakash Raj

*2

#1Bishop Heber College (Autonomous), Tiruchirappalli, India.

*2Bharathidasan University, Tiruchirappalli, India.

Abstract— PACMA (Parallelized Adaptive Cipher with Modular

Arithmetic) is a Symmetric Cryptographic Algorithm designed

with traditional techniques to efficiently utilize the parallel

processing capabilities of modern computing systems. It

overcomes the performance inconsistencies prevalent in

conventional cryptographic algorithms when they are

implemented in different computing systems with different

processing capabilities. The size of the key and the plain text

blocks are each 1024-bits. The adaptive nature of this algorithm

is achieved by incorporating flexibility in the size of the key and

plain text sub-blocks and the number of rounds. Level of Intra-

packet parallelization, variety in grain size and the required

security strength are achieved by suitably deciding the sub-block

size. Flow of the algorithm is made dynamic by determining the

execution steps through each key value at runtime. In spite of

these advantages the ECB mode implementation of PACMA

always produces the same cipher text block for a particular plain

text block when the same key is used. CBC and Interleaved CBC

modes with 2-way and 4-way interleaving are employed to

alleviate this problem. The performance of the PACMA in ECB,

CBC and Interleaved CBC modes are analyzed with

implementations in shared memory parallel programming

environment using OpenMP, Java Threads and MPI.

Keywords : Symmetric Block Cipher, Parallel Adaptive

Cryptography, CBC, Interleaved CBC, Modular Arithmetic.

I. INTRODUCTION

Traditional cryptographic algorithms focus only

on the complexity of the algorithm and the strength

and the secrecy of the key [1]. We face variety of

challenges in efficiently implementing these crypto

systems as new trends and technologies have crept

into modern communication and computing

systems. Conventional symmetric cryptographic

algorithms such as DES, IDEA, RC6, Blowfish and

AES are developed before the year 2000 when

computers were built around single 32, 16 or even 8

bits processors. But now, Cryptographic algorithms

can be executed much faster on modern computers.

The present day computing systems and that of

future are not that of single core 32-bits desktops,

but of multi-cored chips and multiprocessor

machines whose processing capacities are 64 or 128

or more bits. Parallelizing the cryptographic

algorithms is the only means to utilize these

systems productively [2].

Further, there is a sharp increase in the rate of

encryptions and decryptions carried out per unit

time as the amount of information passing through

communication networks have increased

exponentially. This imposes additional overhead in

the information exchange and may cause

congestion. A way out of this trouble is to develop a

new class of parallel cryptographic algorithms that

can reduce the time required for encryption and

decryption without diminishing the security

strength using parallel execution techniques.

Addition and multiplication modulo operations

are reversible and they are efficiently involved in

cryptography. The binary coded value of the plain

text is added or multiplied with the key, which is a

member of the set of residues „Zm‟ to yield a sum or

product value. When the value obtained is divided

with „m‟ yields a remainder, which is the resultant

cipher text. Similarly the plain text can be retrieved

by performing the same operation with the cipher

text and the additive or multiplicative inverse value

of the key used[3],[4].

 Adaptive Cryptography is a trend, which deals

with attaining flexibility in the cryptographic

algorithms by dynamically varying the algorithmic

flow and the choice of the key and the plain-text

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3725

sub-blocks. Adaptive nature of these Cryptographic

Algorithms can be classified as (i) Inter-Algorithmic

Adaptation and (ii) Intra-Algorithmic Adaptation.

Inter-Algorithmic Adaptation is achieved by

employing different algorithms [5], whereas Intra-

Algorithmic Adaptation instills dynamism within

the same algorithm. Intra-Algorithmic Adaptation is

employed in this work.

Parallel Cryptography is a recent development,

which deals with implementation of cryptographic

algorithms in modern parallel computing

environments. Parallelism accelerates processing by

simultaneous execution of multiple tasks. Implicit

parallelism is achieved by the inherent resources

and techniques in the processing hardware. Explicit

parallelism is extracted by the external

arrangements and codes by utilizing the available

parallel hardware resources efficiently. Techniques

used for explicit parallelism can be categorized as

(i) Per-Connection Parallelism (ii) Per-Packet

Parallelism and (iii) Intra-Packet Parallelism.

Per-connection parallelism is a method in which

each connection is given its own thread or process

that runs exclusively on one processor. This is the

most common method of parallelization, and

requires no modification to the existing algorithm

or the software implementation. The per-connection

parallelization method makes no attempt to fully

utilize modern architectures. In Per-packet

parallelism connections disperse their packet

processing load over multiple processors, wherein

each packet is treated individually. Many current

algorithms lend themselves well to this kind of

parallelization, but, no cryptographic software

implementing this per-packet parallelism is

available. Intra-packet parallelism is the most

difficult type of parallelism, as it depends on

algorithm design. It also requires changes in the

implementation of the cryptographic algorithm,

depending no longer on the flexibility of the

hardware or operating system upon which it is run

[2], [6]. Intra-packet parallelism is employed in

PACMA.

This paper is designed as follows. section II gives

the related works, section III depicts the PACMA

Cryptographic Algorithm and its ECB

implementation, section IV deals with the CBC

implementations of PACMA, section V deals with

the Interleaved CBC implementation of PACMA,

and Section VI concludes the paper.

II. RELATED WORKS

 Efforts to parallelize existing cryptographic

algorithms have been pursued by several

researchers from year 2000 onward. The prominent

of these efforts can be classified broadly as

Hardware or Software Parallel Cryptographic

Implementations involving several technical

approaches beneath them as depicted in Fig 1.

Fig 1: Classification of Parallel Implementation of

Cryptographic Algorithms

Design and implementation of a crypto

processor by HoWon Kim et al, introduced a

special-purpose microprocessor optimized for the

execution of cryptography algorithms. The crypto

processor consists of a 32-bit RISC processor block

and a coprocessor block dedicated to the SEED and

Triple-DES algorithms [7]. Pionteck et al, in their

work presented a hardware design of AES with

reconfigurable encryption/decryption engines which

supports all key lengths. The reconfigurable crypt-

engine is integrated in a 32 bit RISC processor as a

functional unit and can operate in parallel with the

standard ALU. The Reconfigurable Cryptographic

Unit (RCU) is integrated into a 32 bit five stage

Parallel Cryptographic Implementations

Hardware Parallelization Software Parallelization

Paralleli-

zation with

RISC

Processors

Paralleli-

zation with

FPGA

Parallelization with

ASIC

Parallel

Codes

for GPU /

Multicore

Processors

Paralleli-

-zation of

Loops

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3726

pipeline RISC Processor and the area which is used

for the RCU is less than 27% of the total area [8].

An Application-Specific Integrated Circuit

(ASIC) is an Integrated Circuit (IC) customized for

a particular use, rather than intended for general-

purpose use. When ASICs are used to implement

cryptographic algorithms it provides robust

operation and much of the overhead involved in

hardware implementation is reduced. The works

carried out on ASIC implementation of DES,

3DES, IDEA and all the round 2 candidates of AES

by S.Mukherjee et al., T.Ichikawa et al., and

B.Weeks et al., are prominent in this category[9]-

[11].

 Field Programmable Gate Array (FPGA)

logic cells are reconfigurable platforms that provide

relatively a low cost, high performance method of

implementing cryptographic primitives. Several

standard algorithms such as DES, Triple DES, and

AES are parallelized using FPGAs by Swankoski et

al. [12]. The implementation environment is

composed of Virtex-II Pro, FPGA Platform with

Verilog HDL and Block RAM resources. Another

hardware design of AES in chip proposed by

Kotturi, et al., uses hierarchical simultaneous key

generation, is implemented with ten separate units

in XC2VP70 device with speed grade -7 with

Virtex II Pro FPGA. Each unit can execute one

round of the algorithm and ten rounds of the

algorithm can be executed in parallel in a chip using

external pipelined design. The throughput rate

achieved in this method is higher than most other

implementations [13]. In yet another

implementation by Chi-Wu, et al, 128-bit AES was

decomposed into four 32-bit AES to be executed in

parallel. This outperformed all other recent works

by requiring less than 20% reconfigurable area and

operated four times faster than 32-bit AES by

providing double the throughput [14].

Microprocessors with multiple cores and

Graphical Processing Units (GPUs) are widely

available at affordable prices. Considering the

computational demands of the cryptographic

algorithms, these parallel platforms are relevant to

parallelize the existing algorithms to enhance the

performance. CUDA programming is used to

parallelize the algorithms in GPU [15], [16].

OpenMP is used to extract parallelism from Multi-

Core Processors [17].

Praveen Dongara et al. parallelized several

prominent private-key cryptographic algorithms

such as 3DES, IDEA, Twofish, RC4, Rijndael,

Blowfish, RC6, MARS and RC4. They yielded

better performance in ECB and mode through

multithreading on symmetric multiprocessors. As

ECB implementations produced same cipher text

for a given plain text always, CBC and Interleaved

CBC implementations were verified [18]. Similar

works with CBC and Interleaved CBC modes were

carried out on AES by Zadia Codabux-Rossan et al.

[19] and Ashokkumar et al. [20]

Considering the fact that the most time-

consuming elements of source code of

cryptographic algorithms without including the I/O

functions are loops, they are parallelized for all the

popular cryptographic algorithms such as DES,

Triple DES, IDEA, AES, RC5, Blowfish, GOST

and LOK191 by Bielecki et al. The standard modes

of operations selected for Ciphers are ECB, CBC,

CFB, OFB and CTR. The Data Dependences are

resolved before parallelizing the Loops. OpenMP

was used to parallelize the loops in these algorithms

and Petit was used to resolve dependences in the

loops. Speedup measurements were presented for

all these implementations [21], [22].

Even though all the efforts to parallelize the

existing conventional cryptographic algorithms

with hardware and software techniques had given

better results, they cannot be fully parallelized or

implemented efficiently in present day computing

systems. The dependency problems and the

inability to efficiently modularize the sections of

the algorithms hover around and haunt the

parallelization. Thus a path for the new class of

cryptographic algorithms that is devoid of these

problems is set in.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3727

III. PARALLEL ADAPTIVE CIPHER WITH MODULAR

ARITHMETIC (PACMA)

In our previous work we have developed the
Parallel Adaptive Cipher with Modular Arithmetic
(PACMA) and implemented in ECB mode [23].
PACMA is a symmetric block cipher with the block
length and the key size each of 1024 bits. The sub-
block size of the key and the plain text is made
adaptive by varying them suitably based on the
processing capacity of the computing system used.
The behavior of the algorithm is decided
dynamically by deriving the control information
from the key. The granularity of the algorithm is
decided by forming sub-blocks of various sizes in
the range 2

n
 where n=3 to 8. The processing

resources available and the security strength
required are used to decide the number of rounds,
size of the key and the plaintext sub-blocks. This is
depicted in Fig 2.

Fig 2. General Block Diagram of PACMA

Each round in PACMA has eight stages as
depicted in fig 3. The 1024 bit key is directly used
in the first stage but it undergoes different
transformations in the remaining stages. The sub-
block generation routine is run to generate the key
and the plain text sub-blocks; before they are
involved in operations at each stage. In the first
stage modulo addition operation is performed with
the key sub-blocks and the plain text sub-blocks in a
pattern decided by the initial and the final bits of the
key. If both these bits are of same value then
modulo addition operation is performed directly,
otherwise the plain text bits are reversed before the
operation. The key bits are then rotated to right or

left by b/2 positions within the key sub-blocks so
that it can be used in the next stage. Here „b‟ refers
to the number of bits in each key sub-block. The
direction of rotation is determined by the parity of
the key. If the parity is odd the bits are rotated to the
right, otherwise they are rotated to the left.

In the second stage addition modulo 2
8
 operation

is carried out with each key and plain text sub-
blocks. If the sub-block size is greater than 8 bits,
the key and the plain text sub-blocks are further
divided into chunks of 8 bits in this stage to
facilitate the addition modulo 2

8
 operation.

Following this exchange manipulation is carried out
between the key sub-blocks. This is achieved by
swapping the odd numbered sub-blocks with the
next higher order even numbered sub-blocks. In the
third stage, multiplication modulo 2

8
+1 operation is

carried out on the 8 bit chunks of the key and the
plain text that are available after the second stage.
Intra sub-block rotation is then carried out for each 8
bit chunk of key sub-blocks as it was done before
the second stage.

In the fourth stage addition modulo 2
16

 operation
is performed with the key sub-blocks and the plain
text sub-blocks after dividing or grouping them into
chunks of 16 bits. An inter sub-block rotation is
performed for the key as it is done before the fifth
stage. The position for rotation is derived from the
value given by the first ten bits of the key block.
The direction of rotation is specified by the eleventh
bit of the key block. If the value of the eleventh bit
is „1‟the key bits are rotated to the right and if it is
„0‟ then it is rotated to the left. Multiplication
modulo 2

16
+1 operation is carried out after further

dividing or grouping the key and plain text sub-
blocks into chunks of 16 bits in the fifth stage. The
key manipulation is then performed with the 16 bit
chunks of the key as it is done before the fourth
stage for 8 bits chunks.

The operation in the second state is repeated for
the sixth stage. The key sub-blocks then undergo an
exchange key manipulation by swapping the sub-
blocks at the extreme ends. The inner sub-blocks at
the next level are then swapped and this is carried
towards the sub-blocks in the central position of the
key. The operation performed in the third stage is
repeated in the seventh stage. The key bits then
experience the Intra sub-block rotation similar to the

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3728

first key manipulation operation and then they are
utilized for modulo addition operation in the eighth
stage. Brief algorithmic depiction of PACMA with
single round can be given as follows:

Fig 3. Stages in each round of PACMA

Input : 1024 bit plain text block

Output : 1024 bit cipher text block

Sub-Block Generation:

1. Run environment identification routine to identify the

number of processors/cores „p‟, their data handling

capacities „c‟ and clock speed „s‟ to divide the 1024 bits

key and the 1024 bits plain text into sub-blocks of „b‟ bits.

2. if p==1 && c < 16 bits && s ≤ 10 MHz then b

3. else if p==1 && c ≥ 16 bits && c < 32 bits && s > 10

MHz && s ≤ 100 MHz then b = 16 bits.

4. else if p==1 && c ≥ 32 bits && c < 64 bits && s >

100MHz && s ≤ 1000 MHz then b = 32 bits.
5. else if p≤4 && c≥64 bits && s > 1GHz then b=64 bits.

6. else if p>4 c ≥ 64 bits && s > 3GHz then b=256 bits

7. else display “resources unsuitable to implement

PACMA”.

Steps in Single Round of PACMA :

1. Modulo addition with key and plain text sub-blocks.

2. Intra sub-block rotation on key sub-blocks.

3. Addition modulo 28 with key and plaintext sub-blocks.

4. Exchange sub-block operation on key sub-blocks.

5. Multiplication modulo 28+1 with key and plaintext sub-

blocks.

6. Intra sub-block rotation on chunks of key sub-blocks.
7. Addition modulo 216 with key and plaintext sub-blocks.

8. Inter sub-block rotation on key sub-blocks.

9. Multiplication modulo 216+1 with key and plaintext sub-

blocks.

10. Intra sub-block rotation on chunks of key sub-blocks.

11. Addition modulo 2
8
 with key and plaintext sub-blocks.

12. Exchange sub-block operation on key sub-blocks.

13. Multiplication modulo 28+1 with key and plaintext sub-

blocks.
14. Intra sub-block rotation on key sub-blocks.

15. Modulo addition with key and plaintext sub-blocks.

 PACMA is implemented in shared memory
computing system with multi-core architecture with
four cores using MPI, OpenMP and Java Thread
programming with different sub-block sizes and
compared with the sequential results. The speedup
of various combinations of executions in ECB mode
are analyzed and compared and the results are given
in Table I.

TABLE I

ECB MODE IMPLEMENTATION OF PACMA (ONE ROUND)

SUB-BLOCK
SIZE

PACMA - SPEEDUP IN ECB MODE

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 2.85 2.89 2.33 2.38 2.18 2.22

16 bits 3.42 3.47 2.57 2.63 2.41 2.46

32 bits 3.54 3.62 2.96 3.02 2.75 2.81

64 bits 3.61 3.68 3.37 3.43 3.17 3.22

128 bits 3.83 3.89 3.72 3.68 3.56 3.61

256 bits 3.86 3.94 3.81 3.88 3.74 3.79

ECB Mode: Electronic Code Book Mode

ENC : Encryption DEC : Decryption

 The performance of cryptographic algorithms in
parallel computing environment can be indicated
using speedup. Speedup is the ratio of the time taken
by the serial implementation of the algorithm to that
of its parallel implementation and is denoted by
Sp = Ts/Tp. Where „p‟ denotes the parallel
implementation with p number of processors or
cores and „s‟ denotes its sequential implementation.

 All the parallel implementations provided similar
variation in their output. When the sub-block size is
kept small the speedup is low, but it gradually
increased linearly when the sub-block size is
increased. The decryption process provided better
speedup than the encryption process because most
of the values and the decisions computed for the
encryption stages are made available to the
decryption stages. A comparative representation of
the performance of encryption algorithm using MPI,

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3729

OpenMP and Java threads are shown in Fig. 4 and
that of the decryption algorithm is shown in Fig 5.

Fig. 4: Performance of ECB mode Encryption of PACMA

Fig. 5: Performance of ECB mode Decryption of PACMA

IV. CBC MODE IMPLEMENTATION OF PACMA

In ECB mode of PACMA, a plain text block

always produces the same cipher text block, when

the same key is used. Cipher Block Chaining (CBC)

mode is used to overcome this problem. CBC mode

ensures that even if the same plain text block is

repeated again and again it yield totally different

cipher text blocks in the output. In CBC mode

result of the encryption of the previous block are

fed back into the encryption of the current block.

As there is no feedback available for the first block

of the plaintext a random block of text known as

Initialization Vector (IV) is used in the first step of

encryption. The encryption process in CBC mode is

shown in Fig. 6 and the decryption process in Fig. 7.

Fig. 6: CBC mode Encryption of PACMA

Fig. 7: CBC mode Decryption of PACMA

The decryption is just the reverse of the encryption,

except the feedback of the previous level is readily

available in decryption, whereas in encryption it is

not. The speedup results of CBC mode

implementation of PACMA in MPI, OpenMP and

Java Threads are given in Table II.

TABLE II

CBC MODE IMPLEMENTATION OF PACMA (ONE ROUND)

SUB-BLOCK

SIZE

PACMA - SPEEDUP IN CBC MODE

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 1.28 2.71 1.14 2.21 1.12 2.04

16 bits 1.49 3.31 1.31 2.46 1.25 2.27

32 bits 1.62 3.48 1.52 2.87 1.44 2.70

64 bits 1.66 3.52 1.61 3.31 1.60 3.09

128 bits 1.85 3.72 1.82 3.57 1.74 3.48

256 bits 1.97 3.78 1.94 3.76 1.89 3.64

CBC Mode : Cipher Block Chaining Mode

ENC : Encryption DEC : Decryption

PACMA
ENCRYPTION

1024–bits

Plain Text

IV

PACMA
ENCRYPTION

1024–bits

Plain Text

1024 – bits

Cipher Text

1024–bits

Plain Text

PACMA
ENCRYPTION

1024 – bits

Cipher Text

1024 – bits

Cipher Text

K K K

PACMA
DECRYPTION

IV

PACMA
DECRYPTION

1024 – bits

Cipher Text

PACMA
DECRYPTION

1024 – bits

Cipher Text

1024 – bits

Cipher Text

1024–bits

Plain Text

1024–bits

Plain Text

1024–bits

Plain Text

K K K

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3730

The performance of CBC mode encryption of

PACMA is drastically reduced because of the

dependencies caused by feedback of the ciphertext

to the next level. The decryption is not affected as

the feedback to the next level is readily available.

The encryption and decryption performance graphs

of CBC mode PACMA is given in Fig. 8 and Fig. 9.

Fig. 8: Performance of CBC mode Encryption of PACMA

Fig. 9: Performance of CBC mode Decryption of PACMA

V. INTERLEAVED CBC MODE IMPLEMENTATION OF

PACMA

The encryption in CBC mode depends on the

encryption of the previous sub-blocks. This makes

it difficult to parallelize encryption. The only

solution to this problem is to interleave multiple

encryption blocks [24]. Interleaving can be done in

n-ways, wherein the two-way and four-way

interleaving are adopted in this work.

A. Two-Way Interleaved CBC mode of PACMA

Two-Way interleaving is the next immediate

improvement to the CBC implementation. In two-

way interleaving the output of the first encryption

sub-block is feedback to the third and that of second

to fourth and so on. In this case two Initialization

Vectors are required to start the encryption and the

decryption processes. The structure of two-way

interleaving for encryption is shown in Fig. 10 and

that of decryption in Fig. 11.

Fig. 10: Two-Way Interleaved CBC mode Encryption of PACMA

Fig. 10: Two-Way Interleaved CBC mode Decryption of PACMA

The decryption process in this case too is just

the reverse of the encryption process. The feedback

ciphertext of the previous level is also readily

available in each block of decryption, whereas in

encryption it is not so. The speedup results of

two-way interleaved CBC mode implementation of

PACMA in MPI, OpenMP and Java Threads are

given in Table III.

ENC

PT3

CT3

K

ENC

PT4

CT4

K

ENC

PT1

IV1

CT1

K ENC

PT2

IV2

CT2

K

DEC

PT1

IV1

CT1

K DEC

PT2

IV2

CT2

K DEC

PT3

CT3

K

DEC

PT4

CT4

K

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3731

TABLE III

2-WAY IMPLEMENTATION OF ICBC MODE PACMA (ONE ROUND)

SUB-BLOCK
SIZE

PACMA - SPEEDUP IN 2-WAY ICBC MODE

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 1.73 2.73 1.44 2.24 1.32 2.07

16 bits 2.18 3.32 1.59 2.49 1.49 2.30

32 bits 2.33 3.50 1.89 2.89 1.76 2.72

64 bits 2.45 3.54 2.22 3.34 2.06 3.12

128 bits 2.64 3.74 2.49 3.59 2.34 3.50

256 bits 2.70 3.80 2.58 3.78 2.53 3.66

ICBC Mode : Interleaved Cipher Block Chaining Mode

ENC : Encryption DEC : Decryption

Fig. 12: Performance of 2-Way ICBC mode Encryption of PACMA

The performance of two-way interleaved

CBC implementation is found to be better than the

CBC implementation and it is illustrated in Fig. 12

and Fig. 13. The additional processes or threads that

handle the two-ways of encryption and decryption

separately are responsible for this enhancement.

Fig. 13: Performance of 2-Way ICBC mode Decryption of PACMA

B. Four-Way Interleaved CBC mode of PACMA

In four-way interleaving the output of the first

encryption sub-block is feedback to the fifth and

that of second to sixth, third to seventh, fourth to

eighth and so on. In this case four Initialization

Vectors are required to start the encryption and the

decryption processes. The structure of four-way

interleaving for encryption is shown in Fig. 13 and

that of decryption in Fig. 14.

Fig. 13: Four-Way Interleaved CBC mode Encryption of PACMA

ENC

PT1

IV1

CT1

K

ENC

PT2

IV2

CT2

K

ENC

PT3

IV3

CT3

K

ENC

PT4

IV4

CT4

K

ENC

PT5

CT5

K

ENC

PT6

CT6

K

ENC

PT7

CT7

K

ENC

PT8

CT8

K

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3732

Fig. 14: Four-Way Interleaved CBC mode Decryption of PACMA

A considerable improvement is seen in the performance of

four-way interleaved CBC mode implementation of PACMA

when compared with the simple CBC and two-way

Interleaved CBC modes. This is shown in Table IV and in Fig.

15 and Fig. 16.

TABLE IV

4-WAY IMPLEMENTATION OF ICBC MODE PACMA (ONE ROUND)

SUB-BLOCK
SIZE

PACMA - SPEEDUP IN 4-WAY ICBC MODE

MPI OpenMP JAVA Threads

ENC DEC ENC DEC ENC DEC

8 bits 1.98 2.77 1.63 2.26 1.54 2.10

16 bits 2.46 3.36 1.86 2.52 1.76 2.34

32 bits 2.58 3.54 2.16 2.92 2.05 2.72

64 bits 2.67 3.56 2.49 3.36 2.36 3.15

128 bits 2.91 3.77 2.78 3.62 2.67 3.53

256 bits 2.97 3.83 2.89 3.80 2.78 3.69

ICBC Mode : Cipher Block Chaining Mode

ENC : Encryption DEC : Decryption

VI. CONCLUSION

Fig. 15: Performance of 4-Way ICBC mode Encryption of PACMA

Fig. 16: Performance of 4-Way ICBC mode Decryption of PACMA.

Increasing the level of the interleaved CBC mode

enhances the parallel performance, but it also

increases the number of Initialization Vectors

required and the complexity of implementations.

Even though the encryptions are made to perform

better, it cannot be enhanced like ECB mode

implementations due to the dependency issues

involved with the feedback of the ciphertext from

the previous stage. The decryption processes does

not suffer such drawbacks and they perform well in

parallel executions, as the ciphertext of the previous

stage is available well in advance before the

beginning of the process in the current level.

DEC

PT8

CT8

K

DEC

PT1

IV1

CT1

K DEC

PT4

IV4

CT4

K DEC

PT3

IV3

CT3

K DEC

PT2

IV2

CT2

K DEC

PT5

CT5

K

DEC

PT6

CT6

K

DEC

PT7

CT7

K

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 10–October 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3733

VI. CONCLUSION

 The advantages of PACMA are its adaptive

nature, its ability to run on different parallel

computing architectures efficiently, its flexibility in

deciding the size of the key and plain text sub-

blocks and its ability to expand by suitably deciding

the number of rounds. The security level of

PACMA is very strong as key size and plaintext

block size are each 1024 bits. When executed in

parallel computing environments the performance

of ECB mode is found to be better. But it always

produces the same ciphertext for a particular

plaintext when the same key is used. Although CBC

mode is employed to alleviate this problem, its

decryptions support parallelization, whereas its

encryptions do not. The issue faced in

parallelization of CBC mode encryptions is solved

to some extent with two-way and four way

Interleaved CBC implementations.

REFERENCES

[1] William Stallings, “Cryptography and Network Security-Principles and

Practice”, 5
th
 Edition, Dorling Kindersley (India) Pvt. Ltd., licensees of

Pearson Education, 2011.

[2] Eric C. Seidel, Joseph N. Gregg, “Preparing Tomorrow‟s

Cryptography : Parallel Computation via Multiple Processors, Vector

Processing, and Multi-Cored Chips”, Research Paper, May 13, 2003.

[3] Jeffrey Hoffstein, Jill Pipher, Joseph H. Silverman, “An Introduction to

Mathematical Cryptography”, Springer International Edition, Springer

(India) Pvt. Ltd., New Delhi, 2008.

[4] Menezes A. J., Van Oorschot P. C., Vastone S. A., “Handbook of

Applied Cryptography”, CRC Press, 1996.

[5] Suman Khakurel, Prabhat Kumar Tiwary, Niwas Maskey, Gitanjali

Sachdeva, “Security Vulnerabilities in IEEE 802.11 and Adaptive

Encryption Technique for Better Performance”, IEEE Symposium on

Industrial Electronics and Applications, Penang, Malaysia, 2010.

[6] Thomas Rauber, Gudula Runger, “Parallel Programming –for

Multicore and Cluster Systems”, International Edition, Springer (India)

Pvt. Ltd. New Delhi, 2010.

[7] HoWon Kim, YongJe Choi, Kyoil Chung, and HeuiSu Ryu, "Design

and Implementation of a Private and Public Key Crypto Processor and

Its Application to Security System," proceedings of the 3rd

International Workshop on Information Security Applications, pp. 515

– 531, Jeju, Korea, 2002,

[8] Pionteck, T., Staake T., Stiefmeier T., Kabulepa L. D., Glesner M.,

“Design of reconfigurable AES encryption/decryption engine for

mobile terminals”, Paper presented at the proceedings of the

International Symposium on Circuits and Systems ISCAS, 2004.

[9] Sourav Mukherjee, Bidhudatta Sahoo, “A survey on hardware

implementation of IDEA Cryptosystems” Information Security Journal :

A Global Perspective, Vol. 20, Nr. 4-5, pp 210-218, 2011.

[10] Tetsuya Ichikawa, Tomomi Kasuya, and Mitsuru. Matsui. “Hardware

evaluation of the AES finalists.” In Proc. Third Advanced Encryption

Standard Candidate Conference (AES3), pages 279–285, New York,

USA, 2000.

[11] Bryan Weeks, Mark Bean, Tom Rozylowicz, and Chris Ficke.

“Hardware performance simulations of Round 2 Advanced Encryption

Standard algorithms”. In Proc. Third Advanced Encryption Standard

Candidate Conference (AES3), New York, USA, 2000.

[12] Swankoski E. J., Brooks R. R., Narayanan V., Kandemir M., and Irwin

M. J., “A Parallel Architecture for Secure FPGA Symmetric

Encryption”, Paper Presented at the 18
th
 International Parallel and

Distributed Processing Symposium, Santa Fe, New Mexico, 2004.

[13] Kotturi D., Seong-Moo Y., Blizzard J., “AES crypto chip utilizing

high-speed parallel pipelined architecture” Paper presented at the IEEE

International Symposium on Circuits & Systems ISCAS, 2005.

[14] Chi-Wu H., Chi-Jeng C., Mao-Yuan L., Hung-Yun T., “The FPGA

Implementation of 128-bits AES Algorithm Based on Four 32-bits

Parallel Operation”, Paper presented at the First International

Symposium on Data, Privacy, and E-Commerce, ISDPE, 2007.

[15] Chonglei, M., J. Hai and J. Jennes, “CUDA-based AES Parallelization

with fine-tuned GPU memory utilization”, Paper Presented at the IEEE

International Symposium on Parallel and Distributed Processing,

Workshops and Ph. D. Forum (IPDPSW), pp19-23, 2010.

[16] Julian Ortega, Helmuth Tefeffiz, Christian Treffiz, “Parallelizing AES

on Multicores and GPUs”, Proceedings of the IEEE International

Conference on Electro/Information Technology (EIT), 15-17 May

2011, Mankato, US, pp. 1-5.

[17] Li, H. and J. Z. Li, “A new compact dual-core architecture for AES

encryption and decryption”, Canadian Journal of Electrical and

Computer Engineering, pp 209-213, 2008.

[18] Praveen Dongara, T. N. Vijaykumar, Accelerating Private-key

cryptography via Multithreading on Symmetric Multiprocessors. In

Conference Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software, pp 58-69, 2003.

[19] Zadia Codabux-Rossan, M. Razvi Doomum, “AES CCMP Algorithm

with N-Way Interleaved Cipher Block Chaining”, University of

Mauritius Research Journal, Volume – 15, pp 527-544, 2009.

[20] S. Ashokkumar, K. Karuppasamy, Balaji Srinivasan, V.Balasubramanian

“Parallel Key Encryption for CBC and Interleaved CBC” International

Journal of Computer Applications(0975-8887), Volume 2–No. 1, 2010.

[21] Bielecki W., Burak D., “Parallelization of Standard Modes of

Operation for Symmetric Key Block Ciphers”, Image Analysis,

Computer Graphics, Security Systems and Artificial Intelligence

Applications Vol 1 (ACS-CSIM 2005), Bialystok 2005.

[22] Bielecki W., Burak D., “Parallelization of Symmetric Block Ciphers”,

Computing, Multimedia and Intelligent Techniques special issue on

Live Biometrics and Security, Volume 1 (2005), Czestochowa

University of Technology, June 2005.

[23] J. John Raybin Jose, Dr. E. George Dharma Prakash Raj, “PACMA –

An Adaptive Symmetric Cryptographic Algorithm for Parallel

Computing Environments” in the proceedings of the Fifth International

Conference on Advances in Recent Technologies in Communication

and Computing, Bangalore, India, September 2013.

[24] Schneier B., “Applied Cryptography : Protocols, Algorithms, and

Source Code in C”, Second Edition, Wiley & Sons, 1995.

http://www.ijcttjournal.org/

