
 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3423

A Novel Incremental Information Extraction Using Parse Tree Query Language
And Parse Tree Databases

Rajula Srilatha (M.Tech)
CSE Dept, CMRTC, Hyderabad,

Abstract: — Mining is nothing but retrieving the

information from various resources .We have different

approaches to retrieve these information one of them is

traditional pipeline approach. As of increasing technologies

it became more complicated to workout with these

traditional approach the main drawback in these pipeline

approach is if any modifications are done or any module is

developed newly then we have to reapply the extraction .So

we are developing the different approach for data mining in

this paper is through database queries . These are optimized

by databases that make this as efficient approach.

Index Terms: Text mining, query languages, information

storage and retrieval.

I. INTRODUCTION

In this paper, we propose an effective and adjustable

optimization of queries is critical in database management

systems and the complexity involved in finding optimal

solutions has led to the development of heuristic

approaches. Answering data mining query involves a

random search over large databases. Due to the enormity of

the data set involved, model Simplification is necessary for

quick answering of data mining queries. In this paper, we

propose a hybrid model using rough sets and genetic

algorithms for fast and efficient query answering. Rough

sets are used to classify and summarize the datasets,

whereas genetic algorithms are used for answering

association related queries and feedback for adaptive

classification. Here, we consider three types of queries, i.e.,

select, aggregate and classification based data mining

queries. The field of information extraction (IE) seeks to

develop methods for fetching structured information from

K. Murali, M.Tech.
Assistant Professor, CSE Dept,

CMRTC, Hyderabad,

natural language text. Examples of structured information are

the extraction of entities and relationships between entities. IE

is typically seen as a one-time process for the extraction of a

particular kind of relationships of interest from a document

collection. IE is usually deployed as a pipeline of special-

purpose programs, which include sentence splitters, tokenizes,

named entity recognizers, shallow or deep syntactic parsers,

and extraction based on a collection of the development of

frameworks such as UIMA and GATE , providing a way to

perform extraction by defining workflows of components.

This type of extraction frameworks is usually file based and

the processed data can be utilized between components. In

this traditional setting, relational databases are typically not

involved in the extraction process, but are only used for

storing the extracted relationships. While file-based

frameworks are suitable for one-time extraction, it is

important to notice that there are cases when IE has to be

performed repeatedly even on the same document collection.

Consider a scenario where a named entity recognition

component is deployed with an updated ontology or an

improved model based on statistical learning. Typical

extraction frameworks would require the reprocessing of the

entire corpus with the improve identity recognition

component as well as the other unchanged text processing

components. Such reprocessing can be computationally

intensive and should be minimized. For instance, a full

processing for information extraction on 17 million Medline

abstracts took more than 36 K hours of CPU time using a

Single-coreCPUwith2-GHzand2GBofRAM.2 Work by,

addresses the needs for efficient extraction of evolving text

such as the frequent content updates of web documents but

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3424

such approaches do not handle the issue of changed

extraction components or goals over static text data. In this

paper, we propose a new paradigm for information

extraction. In this extraction framework, intermediate

output of each text processing component is stored so that

only the improved component has to be deployed to the

entire corpus. Extraction

is then performed on both the previously processed data

from the unchanged components as well as the updated data

generated by the improved component. Performing such

kind of incremental extraction can result in a tremendous

reduction of processing time. To realize this new

information extraction framework, we propose to choose

database management systems over file-based storage

systems to address the dynamic extraction needs.

II. SYSTEM STUDY

Our proposed information extraction is composed of two

phases:

Initial Phase We perform a one-time parse, entity

recognition, and tagging (identifying individual entries as

belonging to a class of interest) on the whole corpus based

on the current knowledge. The generated syntactic parse

trees and semantic entity tagging of the processed text is

stored in a relational database, called parse tree database

(PTDB).

Extraction Phase Extraction is then achieved by issuing

database queries to PTDB. To express extraction patterns,

we designed and implemented a query language called

parse tree query language (PTQL) that is suitable for

generic extraction. Note that in the event of a change to the

extraction goals (e.g., the user becomes interested in new

types of relations between entities) or a change to an

extraction module (e.g., an improved component for named

entity recognition becomes available), the responsible

module is deployed for the entire text corpus and the

processed data are populated into the PTDB. Queries are

issued to identify the sentences with newly recognized

mentions. Then extraction can be performed only on such

affected sentences rather than the entire corpus. Thus, we

achieve incremental extraction, which avoids the need to

reprocess the entire collection of text unlike the file-based

pipeline approaches. USing database queries instead of

writing individual special-purpose programs, information

extraction becomes generic for diverse applications and

becomes easier for the user. However, writing such queries

may still require many users effort. To further reduce users’

learning burden, we propose algorithms that can automatically

generate PTQL queries from training data or a user’s keyword

queries. We highlight the contributions of this paper.

Novel Database Centric Framework for Information

Extraction. Unlike the traditional approaches, where IE is

achieved by special-purpose programs and databases are only

used for storing the extraction results, we propose to store

intermediate text processing output in a database, parse tree

database. This approach minimizes the need of reprocessing

the entire collection of text in the presence of new extraction

goals and deployment of improved processing components. .

Query Language for Information Extraction. Information

extraction is expressed as queries on the parse tree database.

As query languages such as XPath and XQuery are not

suitable for extracting linguistic patterns [6], we designed and

implemented a query language called parse tree query

language, which allows a user to define extraction patterns on

grammatical structures such as constituent trees and linkages.

Since extraction is specified as queries, a user no longer needs

to write and run special purpose programs for each specific

extraction goal.

Automated Query Generation Learning the query language

and manually writing extraction queries could still be a time-

consuming and labor-intensive process. Moreover, such an ad

hoc approach is likely to cause unsatisfactory extraction

quality. To further reduce a user’s effort to perform

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3425

information extraction, we design two algorithms to

automatically generate extraction queries, in the presence

and in the absence of training data, respectively.

Information Extraction IE has been an active research area

that seeks techniques to uncover information from a large

collection of text. Examples of common IE tasks include the

identification of entities (such as protein names), extraction

of relationships between entities (such as interactions

between a pair of proteins) and extraction of entity attributes

(such as co reference resolution that identifies variants of

mentions corresponding to the same entity) from text. The

examples and experiments used in our paper involve the use

of grammatical structures for relationship extraction. Co

occurrences of entities are a typical method in relationship

extraction, but often lead to imprecise results. Consider that

our goal is to extract relations between drug and proteins

from the following sentence: Quetiapine is metabolized by

CYP3A4 and sertindole by CYP2D6. (PMID: 10422890)

By utilizing our grammatical knowledge, a human reader

can observe that hCYP3A4, metabolize, quetiapinei and

hCYP2D6, metabolize, sertindolei are the only correct

triplet relations for the above sentence. However, if we

consider co occurrences of entities as a criteria to extract

relationships, incorrect relationships such as hCYP3A4,

metabolize, sertindolei and hCYP2D6, metabolize,

quetiapinei would also be extracted from the above

sentence.

III. SYSTEM EVALUTION

Sentence Splitting: In the first module the documents

contain sentences. The sentences are in the unstructured

manner. The module converts sentences to structured

sentences with index. This process is applied on the existing

corpus.

Word Indexing: In this module each sentence of a

document is made up with different words.

 Example: S1= {w1, w2, w3…….wn}

The module splits all the indexed sentences by words.

Word Tagging: In this module, the words will be presented in

the document in different forms such as present, past, future

etc…The words has to be n-grammed to find out the possible

equivalence of root words. The root words can be grouped

together (or) clustered for special group of interests.

Example: {“cricket”, “football”} can be grouped together to

special interests called “sports” category. Identifying group of

words of similar category can have relationship. Building the

relational words together is called word-net.

Parse Tree Database (PTDB) Construction: The word-net is

a semantic relational network. The word-net is store in the

database as PTDB. The module provides an interface to the

user to search the PTDB of the corpus. The user’s query will

be in the form of natural language (or) can be with stop words.

Execution Phase:

 The module provides as efficient way to query the PTDB

 The module provides an interface to the user to search the

PTDB of the corpus.

 The user’s query will be in the form of natural language

(or) can be with stop words.

User’s Query Preprocessing: In this module, user’s query has

to be preprocessed against stop words elimination. The query

words have to be n-grammed for possible root words.

Query Word Tagging (PTQL): In this module, all the n-

grammed words may not be the root words. Find out the

possible root words for each query word. Find the

semantically words for each word of query root word. Find the

appropriate

Tag with their relevancies (or) Frequencies.

IV. RELATED WORK

The main focus so far has been on improving the accuracy and

runtime of information extractors. But recent work has also

started to consider how to manage such extractors in large-

scale IE-centric applications. While we have focused on IE

over unstructured text, our work is related to wrapper

construction, the problem of inferring a set of rules (encoded

as a wrapper) to extract information from template-based Web

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3426

pages. Since wrappers can be viewed as extractors (as

defined in Section 3), our techniques can potentially also

apply to wrapper contexts. In this context, the knowledge of

page templates may help us develop even more efficient IE

algorithms. Our work is also related to the problem of

wrapper maintenance over evolving Web data. The problem

of finding overlapping text regions is related to detecting

duplicated Web pages. Many algorithms have been

developed in this area. But when applied to our context they

do not guarantee to find all largest possible overlapping

regions, in contrast to the suffix-tree based algorithm

developed in this work. Once we have extracted entity

mentions, we can perform additional analysis, such as

mention disambiguation. Thus, such analyses are higher

level and orthogonal to our current work.

Numerous rule-based extractors and learning-based

extractors have been developed. Delex can handle both

types of extractors Much work has tried to improve the

accuracy and runtime of these extractors. But recent work

has also considered how to combine and manage such

extractors in large-scale IE applications. Our work fits into

this emerging direction. In terms of IE over evolving text

data, Cyclex is the closest work to ours. But Cyclex is

limited in that it considers only IE programs that contain a

Single IE black box, as we have discussed. Also considers

evolving text data, but in different problem contexts. They

focus on how to incrementally update an inverted index, as

the indexed Web pages change. Recent work has also

exploited overlapping text data, but again in different

problem contexts. These works observe that document

collections often contain overlapping text. They then

consider how to exploit such overlap to “compress” the

inverted indexes over these documents, and Compile

Project. Two pages p and q of the same URL, retrieved at

different times. A matcher has found that regions u1 and u2

of page p match regions v1 and v2 of page q, respectively

how to answer queries efficiently over such compressed

indexes. In contrast, we exploit the IE results over the over-

lapping text regions to reduce the overall extraction time.

The Cyclex Solution Approach

To describe Cyclex, we begin with two notions:

A region r in a data page p of snapshot Pn+1 is an old region

if it occurs in a page q of snapshot Pn. r is a maximally old

region if it cannot be extended on either Side and still remains

an old region.

To extract mentions fromPn+1, Cyclex then considers each

page p in Pn+1 and “matches”, i.e., compares p with pages in

Pn, to find old regions of p. It then applies extractor E only to

the new regions of p, and copies over the mentions of the old

regions. Since pages retrieved (in consecutive snapshots) from

the same URL often share much overlapping data, to find old

regions of p, Cyclex currently matches p only with q, the page

in Pn that shares the same URL with p. (If q does not exist,

then Cyclex declares that p has no old regions.) Section 8

shows that the choice of matching pages with the same URL

already significantly reduces IE time. Considering more

complex choices (e.g., matching p with all pages in Pn) is an

ongoing research. We call algorithms that match p and q to

find old regions in p page matchers. Sections 5 shows that

such matchers span an entire spectrum, trading off result

completeness for runtime, and that no matcher is always

optimal. For example, the ST matcher described below returns

all maximally old regions, thus providing the most

opportunities for recycling past IE results. But it may also

incur more runtime than matchers that return only some old

regions. So, a priori we do not know if it would be better than

these other matchers.

The Page Matchers

Recall from Section 4 that a page matcher compares pages p

and q to find old regions of p. We have provided the current

Cyclex with three page matchers: DN, UD, and ST (more

matchers can be easily plugged in as they become available).

DN incurs zero runtime, as it immediately declares that page p

has no old region. Cyclex with DN thus is equivalent to

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3427

applying IE from scratch to Pn+1. UD employs a Unix-diff-

command like algorithm [11], which splits pages p and q

into lines, then employs a heuristic to find common lines.

Thus, UD is relatively fast (takes time linear in |p| + |q|), but

finds only some old regions. We omit further description for

space reason, but refer the reader to [11]. ST is a novel

suffix-tree based matcher that we have developed, which

finds all maximal old regions of p uSing time linear in |p| +

|q|. ST and DN thus represent the two ends of a spectrum of

matchers that trade off the result completeness for runtime

efficiency, while UD represents an intermediate point on

this spectrum. In the rest of this section we describe ST in

detail. Roughly speaking, ST inserts all suffixes of q and p

into one suffix tree T [7]. As we insert each suffix of p, T

helps us identify the longest prefix of this suffix that also

appears in q. To realize this intuition, however, we must

handle a number of intricacies, so that we can locate all

maximal old regions without slowing down ST to quadratic

time.

Suffix Tree Basics

The suffix tree for a string q is a tree T with |q| leaves, each

describing a suffix of q. T must satisfy the followings: (1)

each non-root internal node has at least two children. (2)

Each edge is labeled with a nonempty substring of q, and no

two edges out of a node can have labels beginning with the

same character. (3) The path label of a node is the

concatenation of all edge labels on the path from the root to

this node; each suffix of q corresponds to the path label of a

leaf. (4) Each non-root internal node with path label _u

(where _ is a Single character and u is a string) has a suffix

link to the node with path label u; the root has a suffix link

to itself. Figure 3(a) shows the suffix tree for

“ababbabaab$,” where symbol $ terminates the string.

Suffix links are showed as dotted lines.

To construct a suffix tree for q, we insert all suffixes of q one

by one into an initially empty tree. For example, the suffixes

of “ababbabaab$” are “ababbabaab$,” “babbabaab$,”

“abbabaab$,” . . ., “b$.” Let Si denote q [i..|q|], the Ith suffix

of q. Conceptually, to insert Si, we first look up Si, matching

Si against edge labels as we go down the tree until no more

characters can be matched. If lookup stops at a node, we insert

Si as a leaf below that node; if lookup stops in the middle of

an edge, we add a new node to split the edge right before the

point where it diverges from Si, and then insert Si as a leaf of

the new node. Unfortunately, if we insert every Si by starting

the lookup from the root, we would end up with a quadratic

time algorithm.

V. CONCLUSION

In this section, we discuss the main contributions of our work

as well as their limitations.

Extraction framework: Existing extraction frameworks do

not provide the capabilities of managing intermediate

processed data such as parse trees and Semantic information.

This leads to the need of reprocessing of the entire text

collection, which can be computationally expensive. On the

other hand, by storing the intermediate processed data as in

our novel framework, introducing new knowledge can be

issued with Simple SQL insert statements on top of the

processed data. With the use of parse trees, our framework is

most suitable for performing extraction on text corpus written

in natural sentences such as the biomedical literature. As

indicated in our experiments, our increment extraction

approach saves much more time compared to performing

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3428

extraction by first processing each sentence one-at-a time

with linguistic parsers and then other components.

This allows PTQL queries to be applied to sentences that

are incomplete or casually written, which can appear

frequently in web documents. Features such as horizontal

axis and proximity conditions can be most useful for

performing extraction on replacement parse trees. . Parse

tree query language. One of the main contributions of our

work is PTQL that enables information extraction over

parse trees. While our current focus is per-sentence

extraction, it is important to notice that the query language

itself is capable of defining patterns across multiple

sentences. By storing documents in the form of parse trees,

in which the node DOC is represented as the root of the

document and the sentences represented by the nodes STN

as the descendants. PTQL has the ability to perform a

variety of information extraction tasks by taking advantage

of parse trees unlike other query languages. Currently,

PTQL lacks the support of common features such as regular

expression as frequently used by entity extraction task.

PTQL also does not provide the ability to compute statistics

across multiple extractions such as taking redundancy into

account for boosting the confidence of an extracted fact.

For future work, we will extend the support of other parsers

by providing wrappers of other dependency parsers and

scheme, such as Pro3Gres and the Stanford Dependency

scheme, so that they can be stored in PTDB and queried

using PTQL. We will expand the capabilities of PTQL,

such as the support of regular expression and the utilization

of redundancy to compute confidence of the extracted

information.

REF ER EN C E S

[1] D. Ferrucci and A. Lally, “UIMA: An Architectural

Approach to Unstructured Information ProcesSing in the

Corporate Research Environment,” Natural Language Eng.,

vol. 10, nos. 3/4, pp. 327- 348, 2004.

[2] H. Cunningham, D. Maynard, K. Bontcheva, and V.

Tablan, “GATE: A Framework and Graphical Development

Environment for Robust NLP Tools and Applications,” Proc.

40th Ann. Meeting of the ACL, 2002.

[3] D. Grinberg, J. Lafferty, and D. Sleator, “A Robust

ParSing

Algorithm for Link Grammars,” Technical Report CMU-CS-

TR- 95-125, Carnegie Mellon Univ. 1995.

[4] F. Chen, A. Doan, J. Yang, and R. Ramakrishnan,

“Efficient Information Extraction over Evolving Text Data,”

Proc IEEE 24th Int’l Conf. Data Eng. (ICDE ’08), pp. 943-952,

2008.

[5] F. Chen, B. Gao, A. Doan, J. Yang, and R. Ramakrishnan,

“Optimizing Complex Extraction Programs over Evolving

Text Data,” Proc 35th ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’09), pp. 321-334, 2009.

[6] S. Bird et al., “DeSigning and Evaluating an XPath Dialect

for Linguistic Queries,” Proc 22nd Int’l Conf. Data Eng.

(ICDE ’06), 2006.

[7] S. Sarawagi, “Information Extraction,” Foundations and

Trends in Databases, vol. 1, no. 3, pp. 261-377, 2008.

[8] D.D. Sleator and D. Temperley, “ParSing English with a

Link Grammar,” Proc Third Int’l Workshop ParSing

Technologies, 1993.

[9] R. Leaman and G. Gonzalez, “BANNER: An Executable

Survey of Advances in Biomedical Named Entity

Recognition,” Proc. Pacific Symp. Biocomputing, pp. 652-

663, 2008.

[10] A.R. Aronson, “Effective Mapping of Biomedical Text to

the UMLS Metathesaurus: The MetaMap Program,” Proc.

AMIA Symp., p. 17, 2001.

 International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue10 – Oct 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page3429

First A. Author: Rajula Srilatha woasrking as Assistant

Professor in Narayana Engineering College Nellore from

2009. She received B.Tech in Computer Science and

Information Technology from KMCE affiliated to JNTU,

Hyderabad. She is currently doing M.Tech in Computer

Science and Engineering from CMRTC, Hyderabad. And

research interests include logic programming, information

extraction, information retrieval, knowledge representation,

keyword search on structured and semi structured data.

Second B. Author: Mr. K.Murali working as Assistant

Professor of CSE in CMR Technical Campus, Hyderabad

from 2012, he has worked as Asst. Professor of CSE in

BIES, Warangal for last 4 years. Ratified by JNTUH

(2012). Teaching Experience: 5 years. Guided many B.Tech

and M.Tech students in their project work.

