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    Abstract—In today’s Internet, inter-domain 
route control remains elusive; nevertheless, such 
control could improve the performance, 
reliability, and utility of the network for end users 
and ISPs alike. While researchers have proposed 
a number of source routing techniques to combat 
this limitation, there has thus far been no way for 
independent ASes to ensure that such traffic does 
not circumvent local traffic policies, nor to 
accurately determine the correct party to charge 
for forwarding the traffic. 
    We present Platypus, an authenticated source 
routing system built around the concept of 
network capabilities, which allow for accountable, 
fine-grained path selection by cryptographically 
attesting to policy compliance at each hop along a 
source route. Capabilities can be composed to 
construct routes through multiple ASes and can 
be delegated to third parties. Platypus caters to 
the needs of both end users and ISPs: users gain 
the ability to pool their resources and select routes 
other than the default, while ISPs maintain 
control over where, when, and whose packets 
traverse their networks. We describe the design 
and implementation of an extensive Platypus 
policy framework that can be used to address 
several issues in wide-area routing at both the 
edge and the core, and evaluate its performance 
and security. Our results show that incremental 
deployment of Platypus can achieve immediate 
gains. 
Index Terms—Authentication, capabilities, 
overlay networks, source routing. 

I. INTRODUCTION 
 

     The main objective of this paper is used to avoid the 
default and take the alternative path, at the time to check 
the traffic of each path. Network operators and academic 
researchers alike recognize that today’s wide-area Internet 
routing does not realize the full potential of the existing 
network infrastructure in terms of performance, reliability 
or flexibility, while a number of techniques for intelligent, 
source-controlled path selection have been proposed to 
improve end-to-end performance, reliability, and flexibility. 
We present the design and evaluation of Platypus, a source 
routing system that, like many source-routing protocols 
before it, can be used to implement efficient overlay 
forwarding, select among multiple ingress/egress routers, 
provide virtual AS multi-homing, and address many other 
common routing deficiencies. The key advantage of 
Platypus is its ability to ensure policy compliance during 
packet forwarding. Platypus enables packets to be stamped 
at the source as being policy compliant, reducing policy 
enforcement to stamp verification. Hence, Platypus allows 
for management of routing policy independent of route 
export and path selection. Our approach to reducing this 
complexity is to separate the issues of connectivity 
discovery and path selection. Removing policy constraints 
from route discovery presents an opportunity for end users 
and edge networks. The key challenge becomes 
determining whether a particular source route is 
appropriate. ASes have no incentive to forward arbitrary 
traffic; currently they only wish to forward traffic for their 
customers or peers. We argue, however, that this is simply 
a poor approximation of the real goal: ASes want to 
forward traffic only if they are compensated for it. 
Henceforth, we will consider traffic policy compliant at a 
particular point in the network if the AS can identify the 
appropriate party to bill, and that party has been authorized 
by the AS to use the portion of the network in question. It is 
well known that multiple paths often exist between any two 
points in today’s Internet. The central tenet of any source 
routing scheme is that no single route will be best for all 
parties. Instead, sources should be empowered to select 
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their own routes according to whatever criteria they 
determine. Protocols for efficient wide-area route discovery 
and selection, however, are beyond the scope of this paper. 

 
II. OVERVIEW  

 
    It is well known that multiple paths often exist between 
any two points in today’s Internet. The central tenet of any 
source routing scheme is that no single route will be best 
for all parties. Instead, sources should be empowered to 
select their own routes according to whatever criteria they 
determine. Protocols for efficient wide-area route 
discovery and selection, however, are beyond the scope of 
this paper. We assume that the network is configured 
(using BGP, for example) with a set of default routes and 
that certain motivated parties become aware of alternative 
paths, either through active probing, or route discovery 
services . Platypus builds on this basic infrastructure, 
allowing entities to select paths other than the default. 
Packets may specify a set of waypoints to be traversed on 
the way to a destination, but are not required to specify 
each router along the path. A source-routed packet is 
forwarded using default paths between the specified 
waypoints; an end-to-end path is therefore a concatenation 
of default paths provided by the existing routing system. 
    Platypus is designed to be deployed selectively by ASes 
at choice locations in their networks. To support 
incremental deployment, Platypus waypoints are specified 
using routable IP addresses. When source routing a packet, 
the routing entity, which may be an end host or a device 
inside the network, encapsulates the payload and replaces 
the original destination IP address of the packet with the 
address of the first waypoint. The original destination IP 
address is stored in the packet for replacement at the last 
waypoint. When a Platypus packet arrives at a waypoint, 
the router updates the Platypus headers and forwards the 
packet on to the next waypoint. 
 

III. NETWORK CAPABILITIES 
 

    Network capability is made up of two fields: a waypoint 
and a resource principal identifier. 
The waypoint specifies a topological network location 
through which the packet should be routed and the 
resource principal specifies the entity willing to be 
charged for the routing request. Using intra-AS routing 
mechanisms, an AS can route packets for a given 
waypoint to different Platypus routers, thus giving it more 
control over the effects of source-routed traffic on an 
ISP’s traffic engineering. For now, we will consider 
waypoints to correspond to a specific router within an AS. 
 

 
 
 Fig. 1. Platypus header format with a single capability and 
binding attached. 
 
      In Platypus, packets are stamped with a source-routing  
request by inserting a Platypus header immediately after 
the IP header of each packet and including some number 
of capabilities, encapsulating the existing payload. Fig. 2 
shows the Platypus header format with one capability 
attached. The header contains fields for the protocol 
version (currently 0), a set of bit flags a length field 
(specified in terms of 32-bit words), a pointer to the 
current capability (also in terms of 32-bit words), and an 
encapsulated protocol field to facilitate de-encapsulation. 
Capabilities are appended immediately after the Platypus 
header. The Platypus header and capabilities may be 
added by in-network stampers while the packet is in 
transit. 
    Since anyone can use a capability to forward packets 
through the specified waypoint and bill the indicated 
resource principal, Platypus must ensure that 
eavesdroppers watching packets in the network cannot use 
capabilities they observe in flight for their own packets.  
 
A. MAC-Based Authentication 

 
   Platypus prevents forgery of capabilities or their 
bindings with the cascade construction of Bellare et al. 
[7], which is provably secure given an underlying MAC 
that is a pseudorandom function (PRF), as most modern 
MACs are believed to be. We define a secret temporal 
key, s=MACk(c),generated from the capability, c using a 
message authentication code (MAC) such as HMAC [24]. 
The MAC is keyed with k, the key of the specified 
waypoint. This value is securely transferred to the 
resource principal. In order to use a capability, an 
individual packet must be stamped with the capability and 
a binding b=MACs(MASk(P)) where MASk(P) is the 
invariant contents of the packet (not including Platypus 
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headers) with the end-to-end source and destination 
addresses substituted and the packet length field omitted. 
Both and are included in the packet, as shown in Fig. 2. In 
this way, the binding is dependent upon both the secret 
key and the packet’s contents, and thus cannot be reused 
for other packets. Similarly, any changes to the capability 
would render bindings computed with the secret temporal 
key invalid. 
 
R: Revocation set, ID: Current key ID 
PRO C E S S(P : Packet) 
c ← ∗(P.phdr.ptr) 
if |c.id−ID| > 1 or c ∈ R then 
       ICMPERROR(P ) 
s ← MACk(c.way||c.rp||GETTIME(c.id)) 
b’ ← MACs(MA S K(P )) 
if c.b = b’then 
     AC C O U N T(c.rp, P ) 
if P.phdr.src = 0 then 
     P.phdr.src ← P.src 
P.phdr.ptr ← P.phdr.ptr + |c| 
if P.phdr.ptr ≥ P.phdr.len then 
     P.dst ← P.phdr.dst 
else 
       c ← ∗(P.phdr.ptr) 
      P.dst ← c.way 
     FORWARD(P ) 
else 
    ICMPERROR(P ) 
 
Fig. 2. Pseudocode for Platypus forwarding. P is a packet, 
P.src is the packet’s source IP address, and P.phdr is the 
Platypus header in which src(dst) is the source 
(destination) address, ptr is the pointer to the current 
capability and len is the length of the capability list. c is a 
capability, c.way is its waypoint field, c.rp is its resource 
principal field, c.id is its key ID, and c.b is the binding 
accompanying c. | denotes concatenation. 
 
    Fig. 2 presents pseudocode for Platypus packet 
verification and forwarding. To verify a packet’s binding 
(and, therefore, capability), a Platypus router only needs 
the local waypoint key, k, since 
b’=MACMACk(c)(MASK(P))=MACs(MASK(P)).if b=/b’ 
, either the capability or the binding (or both) has been 
forged and the packet should be discarded. An advantage 
of this construction is that the router needs to maintain 
only a constant amount of state irrespective of the number 
of resource principals. In addition, rejected packets elicit 
ICMP responses to the sender to quell further invalid 
transmissions (subject to standard ICMP rate limiting). 
 
 
B. Security 
 

    Security in Platypus is provided by the fact that not all 
parties have the information needed to bind known 
capabilities to new packets or create new, usable 
capabilities. Binding a capability to a packet requires only 
the temporal secret key, s, which is generated based upon 
and the current time. Knowledge of one capability’s 
temporal secret key, however, does not allow a party to 
generate temporal secrets for others. Resource principals 
wishing to transfer their full rights for a particular 
waypoint to a trusted third party can pass both the 
capability and corresponding temporal secret key. While 
the capability can be passed in the clear, the temporal 
secret key must be communicated privately, ensuring that 
only the chosen third parties are able to receive it. These 
third parties can then use to generate bindings to stamp 
their own packets. Others, including those sniffing packets 
on the network, can see capabilities and their bindings, but 
lack the secrets required to generate valid bindings. 
Periodic key expiration ensures that third parties cannot 
use temporal secrets indefinitely. In addition, any temporal 
secret key may be revoked by the resource principal 
through communication with the key server. 

 
IV. CAPABILITY MANAGEMENT 

 
    Platypus gains significant flexibility from the ability to 
transfer capabilities. Entities can collect capabilities from 
multiple resource principals and construct source routes to 
which no single entity would otherwise have rights. We 
describe capability management in several steps: First, we 
detail how capabilities are generated both in general and in 
special cases. Second, we describe how resource 
principals obtain temporal secrets for their own 
capabilities and capabilities delegated to them by others. 
Third, we present a policy framework for applying 
capabilities to IP packets.  
 
A. Capability Generation 

 
    While capabilities are generally minted by an ISP, there 
are two important cases when individuals may wish to 
create new capabilities based on those provided to them by 
their ISPs. 
 
1) Reply Capabilities: Protocols such as TCP have been 
shown to work best when forward and reverse path 
characteristics are similar [6]. In order to use Platypus 
source routes, however, both ends of a flow must have 
their own capabilities and perform their own routing. 
Platypus allows for resource principals to include a reply 
capability and its corresponding temporal secret as part of 
a packet stream for the recipient to use in response.  
 
2) General Delegation: In general, a resource principal 
may want to specify a particular IP address prefix to which 
a third party may send packets using the principal’s 
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capability. Furthermore, the third party should be able to 
sub-delegate (specify a subnet of the previously delegated 
prefix) the capability without needing to contact the 
resource principal or key server.  Platypus therefore allows 
the minting of delegated capabilities, which are derived 
from normal (or previously delegated) capabilities, but 
limited in their scope. 
 
B. Capability Distribution 

 
    There are three main aspects to wide-area capability 
distribution: bootstrapping, lookup, and revocation. 
  
1) Bootstrapping: To bootstrap the capability distribution 
process, we expect that each AS provides an interface 
(likely a Web server) through which resource principals 
establish their accounts.  
 
2) Ordinary Capability Lookup: To look up the current 
temporal secret associated with a capability, a resource 
principal generates a request by encoding the capability 
and a special request opcode as a string and prepends it 
to the key-lookup subdomain (specified during the 
bootstrap process) in a DNS TXT lookup request, which 
is routed by DNS to an appropriate key server. 
 
3) Delegated Capability Lookup: Lookup of delegated 
capabilities is fundamentally different from ordinary 
capability Platypus gains significant flexibility from the 
ability to transfer capabilities. Entities can collect 
capabilities from multiple resource principals and 
construct source routes to which no single entity would 
otherwise have rights.  
 
C. Policy 
 
    So far we have discussed the mechanisms for stamping 
and delegation, deferring questions such as (a) how a 
stamper decides to stamp a particular packet and with 
which capabilities, (b) how a resource principal decides to 
delegate a capability to a peer, and (c) how its peer decides 
to accept a delegated capability. We now present a per-AS 
policy framework designed to address these questions. 
 
 

V. IMPLEMENTATION 
 

    We have built prototype software components for 
UNIX that provide Platypus stamping, key  distribution of 
delegated capabilities, policy specification, and 
forwarding services. Fig 3 depicts key components in our 
prototype. Each is described in turn below.  
 

 
 
Fig.3. Overview of implemented components. 
 
A. Forwarding and Stamping 

 
    We have implemented Platypus forwarding and 
stamping functionality as user-space daemons, (prd and 
psd), which runs in Linux and on Planetlab, and as Linux 
kernel modules, (prkm and pskm). While prd 
implements our full policy framework, user-level packet 
capture and forwarding requires multiple user/kernel 
context switches, resulting in poor forwarding 
performance. Thus, we use prkm to better the potential 
forwarding performance of an in-kernel implementation. 
Prkm processes Platypus packets entirely inside the 
kernel. Upon a packet arrival, in the kernel soft-IRQ 
context, prkm verifies the packet; if the binding is valid, 
the packet is updated and forwarded. By binding interrupt 
handling for different network interfaces to different CPUs 
on a machine, prkm can provide good scaling across 
multiple processors. 
 
B. Distribution of Delegated Capabilities 

 
    We implemented DNS-based distribution of delegated 
capabilities (Section IV-B.3) using the Poslib DNS library. 
We leverage deployed DNS infrastructure by deferring 
DNS lookup work to existing DNS resolvers and servers, 
only performing transformations on DNS messages. For 
example, when a Platypus DNS server receives a TXT 
query, it transforms the query into the corresponding A 
query and lets a local conventional DNS server handle the 
query. On receiving the A response from the DNS server, 
the Platypus DNS server transforms the response into a 
TXT response, includes delegated capabilities as needed, 
and replies to the query. 
 
C. Policy 

 
    The policy engine is implemented as a user-level 
process that communicates with other components in the 
Platypus router using an XDR-based [41] policy protocol. 
The policy protocol allows the engine to give instructions 
to the stamper and DNS server (Steps 0 and 5 in Fig. 4) 
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and receive delegated capabilities from a DNS resolver 
(Step 4). The engine’s instructions currently resemble the 
rule set of a firewall. (In reality these would be derived 
from high-level objectives created by an AS 
administrator.) The policy specification supports prefix-
based matching of traffic, allowing traffic to be sent to and 
received from specific remote ASes through specified 
waypoints, and load-sharing, allowing some proportion of 
traffic to be forwarded through specified waypoints.  
 
D. Protocol Interactions 

 
    We have attempted to design around possible negative 
interactions between Platypus and existing protocols. In 
particular, proper ICMP delivery is complicated by source 
routing. Since ICMP responses can occur for many 
reasons, the appropriate recipient of such messages can be 
ambiguous. For example, should an ICMP time expired 
message be sent to the last Platypus waypoint in the source 
route, the stamper, or the original source? The cause of 
such expiration may be due to in-network stamping or 
other problems such as routing loops. Further 
complicating the matter, non-Platypus routers may  
generate ICMP responses for source-routed packets and 
send them to the last waypoint in the source route. In both 
of the two primary cases—end-host stamping and in-
network stamping—the end-host perceives its Platypus-
enabled connectivity to be the same as ordinary network 
connectivity, thus we send all ICMP packets back to the 
original source address. The first 64 bits of the Platypus 
header contain the original source address, enabling RFC-
compliant routers to include the original source address in 
ICMP error response packets; Platypus routers forward 
such ICMP packets along to the source, subject to standard 
ICMP rate limiting. 
 

VI.  DISCUSSION 
 

During the design of Platypus, we have considered issues 
of performance, security, accounting, the effect of source-
routed traffic upon the network, and alternative means of 
capability delegation. In this section we discuss these 
considerations.  
 
A. Distributed Accounting 

 
    In Platypus, however, a customer may authorize third 
parties to inject packets into its ISP as part of a source 
route. Any accounting scheme that only charges customers 
for packets that traverse their access link clearly will not 
properly account for the customer’s additional use. A 
straightforward approach would maintain counters for 
each resource principal at all Platypus routers within an 
AS, and bill for the total consumption.  
 
B. Replay Attacks 

 
    For rate-based accounting, we can constrain resource 
principals to a fixed, aggregate bandwidth. However, 
while packet bindings cannot be forged (modulo standard 
cryptographic hardness assumptions), they may be 
replayed by an adversary, who may wish to waste a 
resource principal’s limited bandwidth for a given 
capability. Since capabilities expire periodically, a natural 
countermeasure to replay attacks is to track packets that 
traverse a router within some time window and only count 
each distinct packet once. A Bloom filter allows for 
tracking of packets in such a way, but may fill up over 
time, resulting in false positives. This issue can be 
addressed by maintaining a small circular array of Bloom 
filters which are cleared as they fill up [2], [38]. While an 
adversary may be able to log all packets and replay them 
after the corresponding Bloom filter is emptied, if the 
filters are emptied only at key expiration intervals, stored 
packets cannot be replayed. 
 
C. Scalability 

 
    A Platypus router does not need to keep track of 
permissions for end hosts, potentially providing for greater 
scalability. In particular, by using capabilities, Platypus is 
able to implement capability delegation without involving 
Platypus routers or key servers. The down side ,of course, 
of capabilities is communication overhead (28 bytes per-
packet in our prototype). 
 
D. Traffic Engineering 

 
    Conventional wisdom holds that widespread source 
routing deployment would complicate traffic-engineering 
efforts. While there admittedly is cause for concern, we 
have reasons for optimism. Recent simulations by Qiu et 
al. show that while sourcerouted traffic can have 
deleterious interactions with intra-AS traffic engineering 
mechanisms in extreme cases, certain techniques may be 
able to mitigate these effects [34]. In their studies, 
however, source-routed traffic was capable of completely 
specifying intra-AS paths. Our design for Platypus is 
meant to allow ISPs to specify any globally routable IP 
address within their IP space as a Platypus waypoint and 
dynamically adjust the actual (set of) internal router(s) to 
which the IP corresponds in response to traffic load. By 
dilating waypoints in this way, an ISP can meet its traffic 
engineering goals while delivering improved service to 
end hosts; we discuss this in greater detail in an earlier 
version of this work [35]. In addition, an ISP has the 
option of pricing capabilities in a way that attracts traffic 
to lightly loaded links or that compensates for the use of 
links that have little spare capacity. 
 
E. Alternatives for Capability Distribution 
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The use of DNS for distribution of delegated capabilities 
is suited to a usage model in which a server is interested in 
delegating a capability to a large number of clients. While 
this design choice entails modifications to DNS servers 
and resolvers, we have found that the required changes can 
be made in a modular fashion, i.e., without making DNS 
implementations more complex. By using interposition as 
described in Section V-B, we maintain the separation of 
concerns between domain administration and capability 
management. 
    Alternatively, the server can opt to use in-band 
distribution, which is designed for transmitting delegated 
capabilities from receivers to senders of particular flows 
and does not distinguish between client and server roles. 
Consider a Platypus-aware traffic receiver R with IP 
address dst —we show how R transmits a delegated 
capability to a Platypus-aware traffic sender S  with IP 
address src . The mechanism is based on inserting 
“Platypus signaling packets” within the flow. A Platypus 
signaling packet is an IP packet that has the same source 
and destination addresses as the flow but uses a Platypus 
transport protocol. Thus, the signaling packet follows the 
same forwarding path as the flow. periodically inserts a 
delegation listen packet, which contains a randomly 
generated key ks, into the flow, advertising that it is 
capable of receiving delegated capabilities also stores the 
time at which it generated ks. In response, R inserts a 
delegation packet containing the  delegated capability 
c,t,dst and Hr = MACks(c). Upon receiving the delegation 
packet, S verifies and Hr  checks that the corresponding 
key ks is recent. This process ensures that only parties on a 
recent default forwarding path from the S to R  can have 
created the delegated capability, and thus prevents 
unauthorised diversion of packets. 
 
 

VII.    CONCLUSIONS AND FUTURE WORK 
 
    We argue that capabilities are uniquely well-suited for 
use in wide-area Internet routing. The Internet serves an 
extremely large number of users with an even larger 
number of motivations, all attempting to simultaneously 
share widely distributed resources. Most importantly, there 
exists no single arbiter (for example, a system 
administrator or user logged in at the console) who can 
make informed access decisions. Moreover, we believe 
that much of the complexity of Internet routing policy 
stems from inflexibility of existing routing protocols. We 
aim to study how one might implement inter-AS traffic 
engineering policies through capability pricing strategies. 
For example, an AS with multiple peering routers that 
wishes to encourage load balancing may be able to do so 
through variable pricing of capabilities for the 
corresponding Platypus waypoints. While properly 
modeling the self-interested behavior of external entities 

may be difficult, we are hopeful that this challenge is 
simplified by the direct mapping between Platypus 
waypoints and path selection (as compared, for example, 
to the intricate interactions of various BGP parameters). 
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