
 International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 175

A Proposed Framework for Development of a
Visualizer Based on Memory Transfer Language

(MTL)
Ally S. Nyamawe

The University of Dodoma, College of Informatics and Virtual Education
P.O.Box 490, Dodoma, Tanzania

Abstract— Computer programming is among the fundamental
aspects of computer science curriculum. Many students first
introduced to introductory computer programming courses
experience difficulties in learning and comprehending. Vast
amount of researches have revealed that, generally programming
courses are regarded as difficult and challenging and thus often
have the highest dropout rates. Moreover, numerous researches
have devoted in delivering new approaches and tools in
enhancing the process of teaching and learning computer
programming to novice programmers. One among the tools that
have emerged to offer positive results is Program Visualization
tool (Visualizer). Visualizers have shown remarkable
contributions in facilitating novices to learn and comprehend
computer programming. In addition to that, an approach to
visualize codes execution, Memory Transfer Language (MTL),
allows a novice to animate the code through paper and pencil
mechanism without actively involving the machine. MTL
depends on the concepts of RAM (Random Access Memory) to
interpret the code line by line. Programming requires effort and
special approach in the way it is learned and taught, thus this
paper aimed at presenting a proposed framework for developing
a visualizer that employs the use of MTL to enhance teaching
and learning programming.

Keywords— MTL, RAM, Programming, Novice Programmer.

I. INTRODUCTION
Computer programming lies in the core of computer

science curriculum. Programming plays a very fundamental
role in delivering software solutions. To program, one needs
to have an ability to understand and analyse problem, and
writing an algorithm that will solve the identified problem.
Difficulties in teaching and learning programming have been
enduring for years and now considered a universal problem. In
the first place, the difficulties in teaching and learning
programming were fuelled by the poor pedagogical
approaches. In recent years, a substantial number of
researchers have devoted in delivering newly pedagogical
approaches and tools that will make learning programming an
interesting endeavor. With the advances in multimedia
technology, educational tools have been employing the use of
audio, video and animation to create a more user friendly and
interactive teaching and learning environment. For long,
teaching a programming language in the classroom has been a
challenge [1]. To enhance teaching and learning computer

programming, assistive approaches and tools need to be
evolved.

To visually and dynamically explain the concepts of

computer programming, program visualization tools
(Visualizers) were suggested. Visualizers use animated
graphical representation to display line by line execution of
the computer program. Rosminah et al [2] posit that, the main
goal of a visualizer is to assist students in comprehending the
dynamicity of the program through displaying aspects like
values of variables, evaluation of statements, and changes in
the program state in general. Furthermore [2] contended that,
the hidden processes during the program run-time could also
be explained visually by a visualizer. Generally, visualizers
have so far offered positive results. In the research conducted
by Rajala et al [3], through their visualizer named ViLLE, the
authors concluded that, program visualization tool enhances
student’s learning regardless of previous programming
experience. The positive results were also reported by
Kasurinen et al [4]. Moreover, the research conducted by
Mselle et al [5], on the effectiveness of MTL in learning
programming, the results showed that MTL improves
comprehension of the subject. In addition to that, Mselle [6]
research findings suggested that, the use of RAM diagrams as
a visualizer improves programming comprehension and
programming skills.

A. Overview of MTL
As defined by Mselle et al [5], Memory Transfer Language

(MTL) is a language or device used by programmers to
describe the impact of code-line on computer memory (RAM).
The use of RAM blocks to demonstrate the effect of lines of
code to a machine allows novices to grasp what actually is
going on to a machine as results of program execution. MTL
demonstrates the status of RAM blocks in three situations;
before code execution, during code execution and after code
execution. Throughout the process of executing a program,
RAM blocks are dynamically changed to reflect the effect of a
line in execution. A step by step code execution allows a
novice to reason and predict the final results which in turn
enhances comprehension. MTL takes novice into board during
execution process, and therefore the power of novice to
control the machine is not deprived. Mselle et al [7] posit that,
it is proved that MTL is a language to learn programming

 International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 176

which allows novices to develop their coding skills through
practicing and two-way-thinking approach.

B. Program Visualization Tools
Numerous program visualization tools have been developed

and deployed. Though the rationale behind all visualizers is
almost the same, each one has come up with unique features
and functionalities and distinct ways of helping novices to
program. Mutua et al [8] posit that, visualization tools have
been developed to supplement the learning process; in that
regard various forms of teaching aids, models and software
systems are deployed in enhancing the learning process.
Different visualizers for different programming languages
such as C, C++ and JAVA are available today. Kasurinen et al
[4], deployed a program visualization tool (Turtlet) to enhance
student motivation and interest towards programming in the
introductory programming course by applying visualization
tool to lecture demonstrations. Alice, a 3-D interactive
graphics programming environment developed with a goal to
make it easy for novices to develop interesting 3-D
environments and to explore the new medium of interactive 3-
D graphics. Alice serves as a good programming language for
the novice programmers as they can follow up and see how
their animated programs run [9]. Some other visualizers
developed include BlueJ, Jeliot, JPie and Scratch.

II. PROPOSED FRAMEWORK

A. Overview
In this section we present a proposed framework that could

be used in developing a visualizer based on the MTL
framework. A visualizer should be designed to aid a novice
programmer to visualize a program as it is being executed by
the machine. A visualizer is expected to allow a novice to
construct his/her program of choice by either using the built in
controls to automatically insert codes or coding from the
scratch. Once the code is entered, the execution of the lines of
code can be triggered and execution begins. A visualizer
highlights (in colour) each and every line it executes at a
particular point in time and displays the effect to a machine
over the RAM blocks. A visualizer is anticipated to allow a
novice to select the mode of program execution. The first
mode is line by line execution, where the tool reads one line at
a time, highlights a line in colour, and finally shows the code
effect over the RAM blocks. In this mode a novice’s
intervention is needed to allow a visualizer to execute the next
line. The second mode of execution allows for a complete run,
where the tool executes the program from the beginning to the
end while showing the code effect over the RAM blocks. A
visualizer shall provide user friendly error messages that
provide suggestions and guide a novice on how to rectify the
reported errors. In this paper we will demonstrate examples of

codes/programs in VB .Net, however in implementation; one
may choose whatever language of choice.

B. A Visualizer’s Layout
As depicted in Figure 1, a visualizer is proposed to have

three main parts:

1. The controls window: constitutes controls for adding
statements automatically in the code window (A place
where a program is displayed). The controls are for
“Declaration”, “Assignment”, “Data Input”, “Data
Output”, “Condition Statement”, “Looping Statement”
and “Insert text/statement”.

This approach allows novices to create simple
programs without memorizing the syntax of a
programming language in use, which in turn reduces
cognitive load for beginners. In addition to that,
novices are not vulnerable in making syntactical errors
as everything is taken care by a visualizer. A novice is
simply required to click the control of the functionality
to be performed and follow instructions. However, a
visualizer should leave the room for the conversant
novices to write their program in the code window
right from the scratch without using the built in
controls to automatically generate codes.

2. A code window: where the program statements are

displayed. After the novice selects a particular control
to insert a statement, such as for the variable
declaration or data feeding. The corresponding code is
automatically generated and displayed in the code
window. A code window also allows a novice to
manually type in a program. When a program is in
execution, a line currently executed is highlighted in
colour to visually demonstrate a step by step execution
of a program and affect the corresponding RAM block
accordingly.

3. RAM diagrams: have three memory blocks. The first

part is the block of RAM before program execution.
This block is used to display the status of RAM before
execution of any line of code. The block is displayed
and seen to contain nothing. The second RAM block, is
the one which shows the status of RAM after variable
declaration. Once a line for declaring a variable is
executed it affects the block of RAM by showing that,
the memory space is reserved for each declared
variable. The third RAM block displays the status of
RAM after values are assigned to their corresponding
variables. The third block displays the name of a
variable and the memory location containing the value
that has been assigned to a variable.

 International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 177

MENU BAR

Code Window RAM - Before

RAM - Var Ass.

x, 768

Information Display

CONTROL WINDOW

Variable
Declaration/Assignment

Data Input/Output

Conditional
Statement

looping Statement

Insert Statement

 Dim x As Integer
 x = 768
 For i As Integer = 0 To 3
 If (x > 15) Then
 MsgBox ("The number is greater than Fifteen")
 Else
 MsgBox ("The number is less Than Fifteen")
 End If
 Next

RAM - Var Decl.

x, RESERVED

Fig. 1 The Proposed Layout of a Visualizer Interface

C. Program Execution
A visualizer is required to clearly demonstrate through

animations the execution of the program and their
corresponding effects to the machine memory. In this part we
present an execution of a sample program written in VB .Net
to just provide a general overview on how a visualizer should
behave during execution. A program under execution as
shown in Table 1, asks a user to input two numbers which are
stored in array and output their sum.

Table 1: A Sample Program under Execution

1. Dim sum As Integer
2. sum = 0
3. Dim num (1) As Integer
4. For i As Integer = 0 To 1
5. num(i) = InputBox(“Input number” + i)
6. sum= sum + num(i)
7. Next
8. MsgBox(“The sum of numbers is” + sum)

Execution of line 1:
1. Dim sum As Integer
2. sum = 0
3. Dim num (1) As Integer
……..

Fig. 2 A code window displaying line 1 in execution

Before program execution, the RAM diagram is displayed
empty. As depicted in Figure 2, once the execution is started,

a line in execution is highlighted or displayed in a different
way comparing to the rest so as to draw the attention of a
novice and provide details on what a line is all about. In line 1,
a variable named sum is declared. A RAM block will be
displayed to show that a memory location that will store a
value to be assigned to sum is reserved. As depicted in Figure
3, RAM block will be accompanied by details to tell a novice
what has happened in a machine as result of a line execution.

sum RESERVED

Fig. 3 The status of a RAM block after execution of line 1

Execution of line 2:
1. Dim sum As Integer
2. sum = 0
3. Dim num (1) As Integer
……..

Fig. 4 A code window displaying line 2 in execution

sum 0

Fig. 5 The status of a RAM block after execution of line 2

Declaration
of a variable
named sum.

Memory location is reserved
for holding values of sum.

Assigning 0
to a variable
sum

A memory location
reserved for sum is now
holding 0 as the current
value of sum.

 International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 178

Execution of line 3:

1. Dim sum As Integer
2. sum = 0
3. Dim num (1) As Integer
……..

Fig. 6 A code window displaying line 3 in execution

sum 0
num(0) RESERVED
num(1) RESERVED

Fig. 7 The status of a RAM block after execution of line 3

Execution of line 4:
……..
3. Dim num (1) As Integer
4. For i As Integer = 0 To 1
……..

Fig. 8 A code window displaying line 4 in execution

The effect of execution of line 4 to machine memory is as
depicted in Figure 9.

sum 0
num(0) RESERVED
num(1) RESERVED
i 0

Fig. 9 The status of a RAM block after execution of line 4

As far as the loop condition (if the value of i is between 0 and
1 inclusive) is true, the statements in the loop body (line 5 and
6) will be executed iteratively until the loop condition
becomes false. A visualizer should therefore demonstrate the
cycle of execution during looping.

Execution of line 5:

……..
4. For i As Integer = 0 To 1
5. num(i) = InputBox(“Input number” + i)
……..

Fig. 10 A code window displaying line 5 in execution

Suppose a user inputs number 409, the resulting RAM
diagram is as depicted in Figure 11.

sum 0
num(0) 409
num(1) RESERVED
i 0

Fig. 11 The status of a RAM block after execution of line 5

Execution of line 6:

……..
4. For i As Integer = 0 To 1
5. num(i) = InputBox(“Input number” + i)
6. sum = sum + num(i)
……..

Fig. 12 A code window displaying line 6 in execution

sum 409
num(0) 409
num(1) RESERVED
i 0

Fig. 13 The status of a RAM block after execution of line 6

After all statements in the loop body are executed, the next
line (line 7) will be executed. This command returns control
or directs the execution back to the beginning of the loop (line
4) until the loop condition becomes false. Therefore, line 5
and 6 will be executed for the second iteration.

Declaration of an array
named num to store two
elements of type integer.

Memory location is
reserved for holding
the first element of
array num.

Memory location is reserved
for holding the second
element of array num.

A variable i is declared and initially
assigned 0. This loop will keep iterating
as far as the value of i is between 0 and 1
inclusive. The value of i is incremented
by 1after each iteration.

A memory
location holding 0
as the current
value of i

This line will pop up an input box for a
user to input a number. Inputted number
will be assigned to the array as the first
element (num (0)).

A memory location
reserved for the first
element of array
num is now holding
number 409.

The current value of sum which is 0 is
added to the current value of num(i) i.e
num(0) which is 409. The result is
assigned back to a variable sum.

A memory location
holding 409 as the
current value of sum.

 International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 4 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 179

Execution of line 7:

……..
5. num(i) = InputBox(“Input number” + i)
6. sum = sum + num(i)
7. Next
……..

Fig. 14 A code window displaying line 7 in execution

Execution of line 7 causes a loop counter to be incremented
by 1 unless otherwise it is explicitly defined. The effect of line
7 to a RAM is as depicted in Figure 15.

sum 409
num(0) 409
num(1) RESERVED
i 1

Fig. 15 The status of a RAM block after execution of line 7

All loop iterations shall be clearly demonstrated by a
visualizer. Therefore execution of line 4 to 7 will be repeated
as demonstrated from Figure 8 to 15. But this time there
would be some few changes depending on the user inputs.

A visualizer shall explicitly exhibit each line in execution and
corresponding effects to a machine memory. Whatever way
could be used for illustration purpose, such as graphical
representation, animation or audio. On top of that, a novice
shall have ability to control a visualizer such as replaying
execution, pauses execution and selects speed of execution.

III. CONCLUSION
With the tool that provides program visualization, the novices
are able to visualize what is going on in the machine. MTL
provides the visualization of code during execution, showing
each and every line with its effect on the RAM. This enables a
novice to understand the effect of every line of code as it is
executed by the machine. MTL is the current approach which
transfers all authority to the novice programmer. Moreover,
MTL has been tested in live classes and yielded positive
results. Further researches are required to come up with tools
that employ a framework of MTL to exploit its power in
teaching and learning programming courses. In this paper we
have just demonstrated some few examples on what a
visualizer based on MTL should offer, but to develop a more
comprehensive MTL based visualizer we encourage
developers to consult articles in MTL for more details.

REFERENCES

[1] Prince Yaw Owusu, Kofi Adu-Manu, John Kingsley Arthur and
Charles Adjetey. 2013. Performance of Students in Computer
Programming: Background, Field of Study and Learning Approach
Paradigm. International Journal of Computer Applications (0975 –
8887) Volume 77 – No.12, September 2013.

[2] Siti Rosminah and Ahmad Zamzuri. 2014. Integration of Visualization
Techniques and Active Learning Strategy in Learning Computer
Programming: A Proposed Framework. International Journal on New
Trends in Education and Their Implications. January 2014 Volume: 5
Issue: 1 Article: 10 ISSN 1309-6249.:

[3] Teemu Rajala¸ Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski.

2008. Effectiveness of Program Visualization: A Case Study with the
ViLLE Tool. Journal of Information Technology Education:
Innovations in Practice. Volume 7 2008.

[4] Jussi Kasurinen, Mika Purmonen and Uolevi Nikula. 2008. A Study of

Visualization in Introductory Programming. PPIG, Lancaster 2008.

[5] Leonard Mselle and Hashim Twaakyondo. 2012. The impact of

Memory Transfer Language (MTL) on reducing misconceptions in
teaching programming to novices. International Journal of Machine
Learning and Applications, Vol 1, No 1 (2012).

[6] Leonard J. Mselle. Enhancing Comprehension by Using Random

Access Memory (RAM) Diagrams in Teaching Programming: Class
Experiment. Accessed from www.ppig.org/papers/22nd-Teach-4.pdf
on 21st July 2014.

[7] Leonard J. Mselle and Tabu S. Kondo. 2014. Against the “Hello

World”. International Journal of Computer Applications (0975 – 8887)
Volume 95– No.26, June 2014.

[8] Mutua Stephen, Abenga Elizabeth, Patrick Ogao, Wabwoba Franklin

and Anselmo Ikoha. 2012. Choosing Tools of Pedagogy (Case of
Program Visualization). International Journal of Application or
Innovation in Engineering & Management (IJAIEM). Volume 1, Issue
4, December 2012.

[9] Stephen Cooper, Wanda Dann and Randy Pausch. Alice: A 3-D Tool

For Introductory Programming Concepts. Accessed from
web.stanford.edu/~coopers/alice/ccscne00.PD on 23rd July 2014.

This marks the end of a loop. A loop is
started for the next iteration if at all a loop
condition returns true. A loop counter (i)
is incremented by 1 after each iteration.

A memory
location holding
1 as the current
value of i.

