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Abstract— Response time is one of the characteristics of 
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scheduling algorithm.  The proposed New Multi Level Feedback 

Queue [NMLFQ] Scheduler is compared with dynamic, real 

time, Dependent Activity Scheduling Algorithm (DASA) and 

Locke’s Best Effort Scheduling Algorithm (LBESA). We 

abbreviated beneficial result of NMLFQ scheduler in 

comparison with dynamic best effort schedulers with respect to 

response time. 
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I. INTRODUCTION 

In a multiprocessing environment of computer, the 

operating system’s theme is to assign the execution time for 

various processes. The main component of kernel that creates 
the “selection” is called the scheduler [1][4][31][44][51]. The 

representation of the policy of scheduler employed is called 

the scheduling algorithm. Numerous different scheduling 

algorithms have been deduced over the years. 

II. REVIEW OF DYNAMIC BEST EFFORT REAL-TIME 

SCHEDULING ALGORITHMS 

At least two flavors of best-effort real-time scheduling 

algorithms exists. This comprises of the Dependent Activity 

Scheduling Algorithm (DASA) and Locke’s Best Effort 

Scheduling Algorithm (LBESA) [2][6][38][42][49]. 

 
In fact, the DASA and LBESA scheduling algorithms are 

comparable with the canonic Earliest Deadline First (EDF) 

algorithm during under-loaded conditions. In this case, the 

EDF promises to meet entire deadlines and is always optimal. 

However, in the case of an over-loaded circumstance, DASA 

and LBESA attempt to increase the total task benefit 

[12][17][34]. 

 

The author R.K. Clark et al. [43], demonstrates that DASA 

more often, overtakes LBESA for the duration of over-loaded 

circumstances. Peng Li and Ravindran [41], confirms that 

DASA overtakes the Robust Earliest Deadline First (RED) 
scheduling algorithm [15][19][35]. 

 

Burns A et al. [10]. asserts that alternative features of 

DASA and LBESA are utilized for the development of MK7.3 

kernel. R.K. Clark et al. [43], emphasizes that wide-ranging 

characteristics of DASA and LBESA are exploited for the 

growth of Alpha real-time operating system [13][16]. 

 

According to R.K. Clark et al. [43], DASA and LBESA are 

the decent, benefit accrual scheduling algorithms. Both of 

these algorithms are employed to utmost extent for the growth 

of mission critical systems [25][26]. 

 
The characteristic and performance measurement 

parameters of each of the scheduler are known from previous 

work of others. The literature survey provided several 

outstanding noticeable features [9][14][27][32].  

 

After studying policy mechanisms of different available 

schedulers, a New Multilevel Feedback Queue (NMLFQ) 

scheduling algorithm is proposed. NMLFQ includes all 

necessary modules to compete as a real time scheduler applied 

in embedded system domain [18][22].   

 
The MLFQ principle of operation is used in NMLFQ 

scheduling algorithm in such a way that the response time is 

reduced and the functionality of the scheduling is improved 

[21][23][33]. The maximum number of queues and the 

quantum burst time for each queue are found using dynamic 

method. In NMLFQ scheduling, the operating system can 

modify the number of queues and the quantum of each queue 

according to the obtainable processes, deadline and as well as 

urgency consideration of the process (Garcia P. et al. [16]). 

 

In Earliest-Deadline-First scheduling (EDF) priority level 
for every task is neglected. It primarily concentrates on 

completion of each task.  It focuses on selection of task with 

nearest deadline for execution. Respectable CPU utilization 

will be gained, only when the chosen task is having precise 

deadline [3][20][36][42]. The canonic algorithm for real-time 

operating systems is EDF. It practices dynamic scheduling 

principle. The ready process from pool of priority queue is to 

be selected. The chosen process from the queue will be 

searched, for the process nearest to its deadline. The selected 

process is then scheduled to begin execution. The main 

drawback of the algorithm is, as and when the system is 

overloaded, the set of processes will miss deadlines and the 
system leads to deadlock.   
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Fig. 1, demonstrates the problem of missing of tasks in 

response to a deadline. The X axis corresponds to the values 

of time in milliseconds. Y axis corresponds to light weight 

processes or small threads. In the example of a load sharing of 

several time restraint jobs, response is expected at accurate 

time [5][7][39][47][53]. As the fig. 1, illustrates, request is 

made at 3 milliseconds. The response is expected within 

deadline period. Here a dispatch latency of 1 millisecond is 

suffered during the operation. Henceforth the response is sent 

after the deadline period. The response is sent at 4 

milliseconds missing the deadline, in turn results in invalid 
response. The data object is passing some vital data to another 

object involving many processes and threads. We expect to 

have a response to a request within three milliseconds. The 

requirement will be perfect if the system reacts within two 

milliseconds. If the response comes after three milliseconds, 

the job execution crashes. There exists a sleek time of 1 

millisecond from 3 to 4 milliseconds. So here the task missing 

the deadline results in invalid response. 

  
In general a scheduler is written precisely to respect 

application priorities. It is necessary for real time applications 

need to be developed with limited dispatch latency 

[8][10][28][40][45]. The term dispatch latency designates the 

amount of time a system takes to respond to a request for a 

process to begin operation. The complete application response 
time comprises of the interrupt response time, the dispatch 

latency and the application's response time. The system 

detects that a process with higher priority than the interrupted 

process is now ready to dispatch and dispatches the process. 

The time to switch context from a lower priority process to a 

higher priority process is comprised in the dispatch latency 

time. 

 

The shorter version of the pseudo-code of NMLFQ 

scheduler is described in the following section. This includes 

dynamic priority of arriving processes.  Construction of queue 

is performed by loading with, certain number of processes to 
carry out small jobs [11][20][29][37]. 

 

Depending on the load of jobs for the scheduler, the 

numbers of processes are dynamically varied in ready queue. 

We can designate several levels of queues, depending on 

waiting condition of processes and urgency conditions of tasks. 

At any instant of time and with any number of processes and 

jobs to be completed, scheduler must guarantee meeting the 

deadlines of the hard real-time tasks. 

 

PUBLIC CLASS BEGIN : DynamicPriority  
   VARIABLE : Vector<Process> readyQueue =new Vector(); 

   VARIABLE : Hashtable<Integer, Process> pQueue = new 

Hashtable<Integer, Process>(); 

   VARIABLE : public Process p=null; 

   VARIABLE : public Process removedProcess=null; 

   CONSTRUCTOR BEGIN :  DynamicPriority() 

           //Initially loading Queue with some number of 

processes. 

         MONITOR BEGIN : 

            FOR BEGIN :(int i=1;i<=pQueue.size();i++) 

            //Creating process 

             p=Runtime.getRuntime().exec("ps -ef"); 

    

             insertIntoPQueue(i*10,p); 

         FOR END 

         MONITOR END 

         CATCH BEGIN (Exception ex) 

               ex.printStackTrace(); 

         CATCH END 
   CONSTRUCTOR END 

   CONSTRUCTOR BEGIN : public DynamicPriority(int i) 

         MONITOR BEGIN : 

 //Removing the requested number of processes from 

Queue 

         OUTER IF BEGIN (i<10) 

         FOR BEGIN (int j=0;j<i;j++) 

  removedProcess=removeAtEnd(j); 

  INNER IF BEGIN (removedProcess != null) 

         System.out.println("process is removed from 

queue"); 
  INNER IF END 

  INNER ELSE BEGIN 

         System.out.println("process removed from the 

queue is null"); 

  INNER ELSE END 

         FOR END 

         OUTER IF END 

         OUTER ELSE BEGIN 

        addAtFront(i, Runtime.getRuntime().exec("ps -

ef")); 

         OUTER ELSE END 
         MONITOR END 

   CATCH BEGIN :(Exception ex) 

     ex.printStackTrace(); 

         CATCH END 

    CONSTRUCTOR END 

  

/* This method add the process to the readyQueue based on 

priority. It will check the priority and moves the other 

processes in readyQueue accordingly. */ 

 METHOD BEGIN : public void addAtFront(int priority, 

Process temp) 

     Enumeration enumitr = pQueue.keys(); 
      WHILE BEGIN :(enumitr.hasMoreElements()) 

          IF BEGIN : (!(priority 

<(Integer)enumitr.nextElement())) 

     pQueue.put(priority, temp); 

     readyQueue.add(temp); 

          IF END    

       WHILE END 

 METHOD END 

 
/* This method will insert some processes initially into Queue 

and also readyQueue(implementation details)  */ 
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 METHOD BEGIN : public void insertIntoPQueue(int priority, 

Process process) 

 //Adding process to the Queue and also into 

readyQueue 

      IF BEGIN :(process != null) 

 pQueue.put(priority, process);  

  

 readyQueue.addAll(pQueue.values()); 

 System.out.println("process is added into Ready 

Queue"); 

       IF END 
       ELSE BEGIN 

 System.out.println("process is null"); 

      ELSE END 

 METHOD END 

  
/*  This method removes the process from the Queue.  */ 
  METHOD BEGIN : public Process removeAtEnd(int index) 

 //Removing the process from the index specified 

from both readyQueue and pQueue 

 readyQueue.remove(index); 

   RETURN : return(pQueue.remove(index));  

   METHOD END 

 

/* Algorithms guarantee that if a task is accepted for 

execution, the task and all previous tasks accepted by the 

algorithm will meet their time constraints [22][26][30][48]. 

The planning based algorithms attempt to improve the 

response and performance of a system to aperiodic and soft 
real-time tasks while continuing to guarantee meeting the 

deadlines of the hard real-time tasks. */ 

 

    METHOD BEGIN : public void planningBased() 

     IF BEGIN (true) 

        //Task is accepted for execution 

        //Resource are allocated. 

       //Responds in time 

     IF END   

  METHOD END 

  
  METHOD BEGIN : public void bestEffortBased() 

     IF BEGIN : (true) 

     MONITOR BEGIN  

         Enumeration enumitr = pQueue.keys(); 

         Vector sorted = new Vector();  

   

         WHILE BEGIN : (enumitr.hasMoreElements()) 

 int dynArr =(Integer)enumitr.nextElement(); 

 sorted.add(dynArr); 

         WHILE END 

 Collections.sort(sorted); 

         FOR BEGIN (int i=0;i<sorted.size();i++) 
 //Before calling shortest job first set the priority for 

the job. 

 ExecutingProcess((Process)sorted.get(i++)); 

        FOR END 

      MONITOR END 

      CATCH BEGIN (Exception ex) 

 ex.printStackTrace(); 

       CATCH END 

              IF END 

  METHOD END 

   

/* Actual execution started.  */ 

  METHOD BEGIN : public void ExecutingProcess(Process 

process) 

        //Actual Execution happens 

        System.out.println("Execution started..."); 
  METHOD END 

 

/* We are creating pQueue as a placeholder for processes 

which are ready to execute. As it is DynamicPriorityQueue, 

we have to use HashTable for storing both priority and 

processes. Processes will be added based on the priority to the 

Queue and will removed from the end or again, based on 

priority form [24][46][50].  */ 

   METHOD MAIN BEGIN : public static void main(String[] 

args)  

   // TO-DO Auto-generated method stub 
   //Creating Queue 

   CALLING METHOD : new DynamicPriority(); 

       //Removing processes from Queue 

   CALLING METHOD : new DynamicPriority(2); 

   CALLING METHOD : new DynamicPriority(110); 

   MONITOR BEGIN  

     CALLING METHOD : new 

DynamicPriority().addAtFront(2,Runtime.getRuntime().exec(

"ps -ef")); 

     CALLING METHOD : new 

DynamicPriority().planningBased(); 
     CALLING METHOD : new 

DynamicPriority().bestEffortBased(); 

   MONITOR END 

         CATCH BEGIN(IOException e) 

 // TO-DO Auto-generated catch block 

 e.printStackTrace(); 

         CATCH END 

   METHOD MAIN END 

CLASS END 

 

A job is a function of many tasks or processes. Division of 

jobs into task modules is performed from analysis of jobs. All 
the steps of NMLFQ scheduler are summarized in fig. 2. This 

model depicts the coordination amongst various modules of 

scheduler. Jobs are divided into task modules after the 

analysis of the nature of jobs. The history of jobs is 

maintained for future use. The processes are allocated to lock 

the resources with the control of interrupt handler. The task 

controller is made to govern for time stamping of deadline. It 

also supervises ready, pending, blocked and sleeping tasks. 

The evaluation of priority levels of processes, ordering of 

processes and division into time slices is controlled by 

scheduler through the task controller. The peripherals are 
associated to the CPU through input output controller. This 
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occasionally makes use of context switching. Several queues 

are supervised by a substantial queue controller. As stated 

earlier, mapping of processes to critical resource is achieved 

by semaphores. Dynamic prioritization is a vital task of 

scheduler, which necessitate raising or scaling of priority of 

processes. 

 

III. NMLFQ COMPARISON WITH BEST-EFFORT REAL-TIME 

SCHEDULING ALGORITHMS - DASA AND LBESA 

 

The NMLFQ real time scheduler is compared with existing 
best-effort real-time scheduling algorithms. This comprise of 

the Dependent Activity Scheduling Algorithm (DASA) and 

Locke’s Best Effort Scheduling Algorithm (LBESA) 

[20][52][54]. The comparison of NMLFQ scheduler with 

DASA and LBESA is accomplished for twenty test cases. The 

results of NMLFQ, DASA and LBESA for twenty different 

set of inputs are reckoned. The results provided ameliorate 

characteristics for CPU utilization, overall turnaround time, 

average turnaround time, average waiting time and average 

response time of schedulers. The comparative results are 

analyzed for several processes correspondingly, as shown in 
fig. 3 and generalized graph of hundreds of processes can also 

be drawn. Fig. 3, exemplifies, Average Response time for 

NMLFQ scheduler, compared with real time DASA and 

LBESA scheduers for twenty testcases, proves 10 to 25% 

reduction of response time. In this research paper, We have 

depicted the performance with respect to Average Response 

time for NMLFQ scheduler 

 

Fig. 3, proves as per the achieved results, average response 

time for NMLFQ scheduler, compared with real time DASA 

and LBESA scheduers for twenty testcases, illustrates 10 to 
25% reduction of response time in each subsidiary stage. 
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Fig. 1 Task missing the deadline results in invalid response.  
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Fig. 2  Model of detailed conceptual view of NMLFQ including several modules.  

 

 

 
Fig. 3  Average Response time for NMLFQ scheduler, compared with real time DASA and LBESA scheduers for twenty testcases, depicts 10 to 25% reduction 

of response time in each subsidiary stage. 
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IV. CONCLUSIONS 

In this research paper, we have discussed the themes 

associated with NMLFQ scheduler. The basic review of 

dynamic best effort real-time scheduling algorithms is 

explained. Comparison of proposed scheduler is made, with 

best-effort real-time scheduling algorithms - DASA and 

LBESA. Eventually, Model of detailed conceptual view of 

NMLFQ including several modules is also discussed in short. 
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