
International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 3 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 113

Assessment of Response Time for

New Multi Level Feedback Queue Scheduler
M.V. Panduranga Rao

1
 , K.C. Shet

2

1Research Scholar, NITK, Surathkal , Mangalore, India
2Professor, NITK, Surathkal, Mangalore, India

1raomvp@yahoo.com
2kcshet@rediffmail.com

Abstract— Response time is one of the characteristics of

scheduler, happens to be a prominent attribute of any CPU

scheduling algorithm. The proposed New Multi Level Feedback

Queue [NMLFQ] Scheduler is compared with dynamic, real

time, Dependent Activity Scheduling Algorithm (DASA) and

Locke’s Best Effort Scheduling Algorithm (LBESA). We

abbreviated beneficial result of NMLFQ scheduler in

comparison with dynamic best effort schedulers with respect to

response time.

Keywords— NMLFQ, scheduler, process, queue, deadline,

preemption, priority, Multi Level, DASA, LBESA, Dynamic,

Best Effort and algorithm.

I. INTRODUCTION

In a multiprocessing environment of computer, the

operating system’s theme is to assign the execution time for

various processes. The main component of kernel that creates
the “selection” is called the scheduler [1][4][31][44][51]. The

representation of the policy of scheduler employed is called

the scheduling algorithm. Numerous different scheduling

algorithms have been deduced over the years.

II. REVIEW OF DYNAMIC BEST EFFORT REAL-TIME

SCHEDULING ALGORITHMS

At least two flavors of best-effort real-time scheduling

algorithms exists. This comprises of the Dependent Activity

Scheduling Algorithm (DASA) and Locke’s Best Effort

Scheduling Algorithm (LBESA) [2][6][38][42][49].

In fact, the DASA and LBESA scheduling algorithms are

comparable with the canonic Earliest Deadline First (EDF)

algorithm during under-loaded conditions. In this case, the

EDF promises to meet entire deadlines and is always optimal.

However, in the case of an over-loaded circumstance, DASA

and LBESA attempt to increase the total task benefit

[12][17][34].

The author R.K. Clark et al. [43], demonstrates that DASA

more often, overtakes LBESA for the duration of over-loaded

circumstances. Peng Li and Ravindran [41], confirms that

DASA overtakes the Robust Earliest Deadline First (RED)
scheduling algorithm [15][19][35].

Burns A et al. [10]. asserts that alternative features of

DASA and LBESA are utilized for the development of MK7.3

kernel. R.K. Clark et al. [43], emphasizes that wide-ranging

characteristics of DASA and LBESA are exploited for the

growth of Alpha real-time operating system [13][16].

According to R.K. Clark et al. [43], DASA and LBESA are

the decent, benefit accrual scheduling algorithms. Both of

these algorithms are employed to utmost extent for the growth

of mission critical systems [25][26].

The characteristic and performance measurement

parameters of each of the scheduler are known from previous

work of others. The literature survey provided several

outstanding noticeable features [9][14][27][32].

After studying policy mechanisms of different available

schedulers, a New Multilevel Feedback Queue (NMLFQ)

scheduling algorithm is proposed. NMLFQ includes all

necessary modules to compete as a real time scheduler applied

in embedded system domain [18][22].

The MLFQ principle of operation is used in NMLFQ

scheduling algorithm in such a way that the response time is

reduced and the functionality of the scheduling is improved

[21][23][33]. The maximum number of queues and the

quantum burst time for each queue are found using dynamic

method. In NMLFQ scheduling, the operating system can

modify the number of queues and the quantum of each queue

according to the obtainable processes, deadline and as well as

urgency consideration of the process (Garcia P. et al. [16]).

In Earliest-Deadline-First scheduling (EDF) priority level
for every task is neglected. It primarily concentrates on

completion of each task. It focuses on selection of task with

nearest deadline for execution. Respectable CPU utilization

will be gained, only when the chosen task is having precise

deadline [3][20][36][42]. The canonic algorithm for real-time

operating systems is EDF. It practices dynamic scheduling

principle. The ready process from pool of priority queue is to

be selected. The chosen process from the queue will be

searched, for the process nearest to its deadline. The selected

process is then scheduled to begin execution. The main

drawback of the algorithm is, as and when the system is

overloaded, the set of processes will miss deadlines and the
system leads to deadlock.

http://www.ijcttjournal.org/
mailto:1raomvp@yahoo.com
mailto:2kcshet@rediffmail.com

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 3 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 114

Fig. 1, demonstrates the problem of missing of tasks in

response to a deadline. The X axis corresponds to the values

of time in milliseconds. Y axis corresponds to light weight

processes or small threads. In the example of a load sharing of

several time restraint jobs, response is expected at accurate

time [5][7][39][47][53]. As the fig. 1, illustrates, request is

made at 3 milliseconds. The response is expected within

deadline period. Here a dispatch latency of 1 millisecond is

suffered during the operation. Henceforth the response is sent

after the deadline period. The response is sent at 4

milliseconds missing the deadline, in turn results in invalid
response. The data object is passing some vital data to another

object involving many processes and threads. We expect to

have a response to a request within three milliseconds. The

requirement will be perfect if the system reacts within two

milliseconds. If the response comes after three milliseconds,

the job execution crashes. There exists a sleek time of 1

millisecond from 3 to 4 milliseconds. So here the task missing

the deadline results in invalid response.

In general a scheduler is written precisely to respect

application priorities. It is necessary for real time applications

need to be developed with limited dispatch latency

[8][10][28][40][45]. The term dispatch latency designates the

amount of time a system takes to respond to a request for a

process to begin operation. The complete application response
time comprises of the interrupt response time, the dispatch

latency and the application's response time. The system

detects that a process with higher priority than the interrupted

process is now ready to dispatch and dispatches the process.

The time to switch context from a lower priority process to a

higher priority process is comprised in the dispatch latency

time.

The shorter version of the pseudo-code of NMLFQ

scheduler is described in the following section. This includes

dynamic priority of arriving processes. Construction of queue

is performed by loading with, certain number of processes to
carry out small jobs [11][20][29][37].

Depending on the load of jobs for the scheduler, the

numbers of processes are dynamically varied in ready queue.

We can designate several levels of queues, depending on

waiting condition of processes and urgency conditions of tasks.

At any instant of time and with any number of processes and

jobs to be completed, scheduler must guarantee meeting the

deadlines of the hard real-time tasks.

PUBLIC CLASS BEGIN : DynamicPriority
 VARIABLE : Vector<Process> readyQueue =new Vector();

 VARIABLE : Hashtable<Integer, Process> pQueue = new

Hashtable<Integer, Process>();

 VARIABLE : public Process p=null;

 VARIABLE : public Process removedProcess=null;

 CONSTRUCTOR BEGIN : DynamicPriority()

 //Initially loading Queue with some number of

processes.

 MONITOR BEGIN :

 FOR BEGIN :(int i=1;i<=pQueue.size();i++)

 //Creating process

 p=Runtime.getRuntime().exec("ps -ef");

 insertIntoPQueue(i*10,p);

 FOR END

 MONITOR END

 CATCH BEGIN (Exception ex)

 ex.printStackTrace();

 CATCH END
 CONSTRUCTOR END

 CONSTRUCTOR BEGIN : public DynamicPriority(int i)

 MONITOR BEGIN :

 //Removing the requested number of processes from

Queue

 OUTER IF BEGIN (i<10)

 FOR BEGIN (int j=0;j<i;j++)

 removedProcess=removeAtEnd(j);

 INNER IF BEGIN (removedProcess != null)

 System.out.println("process is removed from

queue");
 INNER IF END

 INNER ELSE BEGIN

 System.out.println("process removed from the

queue is null");

 INNER ELSE END

 FOR END

 OUTER IF END

 OUTER ELSE BEGIN

 addAtFront(i, Runtime.getRuntime().exec("ps -

ef"));

 OUTER ELSE END
 MONITOR END

 CATCH BEGIN :(Exception ex)

 ex.printStackTrace();

 CATCH END

 CONSTRUCTOR END

/* This method add the process to the readyQueue based on

priority. It will check the priority and moves the other

processes in readyQueue accordingly. */

 METHOD BEGIN : public void addAtFront(int priority,

Process temp)

 Enumeration enumitr = pQueue.keys();
 WHILE BEGIN :(enumitr.hasMoreElements())

 IF BEGIN : (!(priority

<(Integer)enumitr.nextElement()))

 pQueue.put(priority, temp);

 readyQueue.add(temp);

 IF END

 WHILE END

 METHOD END

/* This method will insert some processes initially into Queue

and also readyQueue(implementation details) */

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 3 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 115

 METHOD BEGIN : public void insertIntoPQueue(int priority,

Process process)

 //Adding process to the Queue and also into

readyQueue

 IF BEGIN :(process != null)

 pQueue.put(priority, process);

 readyQueue.addAll(pQueue.values());

 System.out.println("process is added into Ready

Queue");

 IF END
 ELSE BEGIN

 System.out.println("process is null");

 ELSE END

 METHOD END

/* This method removes the process from the Queue. */
 METHOD BEGIN : public Process removeAtEnd(int index)

 //Removing the process from the index specified

from both readyQueue and pQueue

 readyQueue.remove(index);

 RETURN : return(pQueue.remove(index));

 METHOD END

/* Algorithms guarantee that if a task is accepted for

execution, the task and all previous tasks accepted by the

algorithm will meet their time constraints [22][26][30][48].

The planning based algorithms attempt to improve the

response and performance of a system to aperiodic and soft
real-time tasks while continuing to guarantee meeting the

deadlines of the hard real-time tasks. */

 METHOD BEGIN : public void planningBased()

 IF BEGIN (true)

 //Task is accepted for execution

 //Resource are allocated.

 //Responds in time

 IF END

 METHOD END

 METHOD BEGIN : public void bestEffortBased()

 IF BEGIN : (true)

 MONITOR BEGIN

 Enumeration enumitr = pQueue.keys();

 Vector sorted = new Vector();

 WHILE BEGIN : (enumitr.hasMoreElements())

 int dynArr =(Integer)enumitr.nextElement();

 sorted.add(dynArr);

 WHILE END

 Collections.sort(sorted);

 FOR BEGIN (int i=0;i<sorted.size();i++)
 //Before calling shortest job first set the priority for

the job.

 ExecutingProcess((Process)sorted.get(i++));

 FOR END

 MONITOR END

 CATCH BEGIN (Exception ex)

 ex.printStackTrace();

 CATCH END

 IF END

 METHOD END

/* Actual execution started. */

 METHOD BEGIN : public void ExecutingProcess(Process

process)

 //Actual Execution happens

 System.out.println("Execution started...");
 METHOD END

/* We are creating pQueue as a placeholder for processes

which are ready to execute. As it is DynamicPriorityQueue,

we have to use HashTable for storing both priority and

processes. Processes will be added based on the priority to the

Queue and will removed from the end or again, based on

priority form [24][46][50]. */

 METHOD MAIN BEGIN : public static void main(String[]

args)

 // TO-DO Auto-generated method stub
 //Creating Queue

 CALLING METHOD : new DynamicPriority();

 //Removing processes from Queue

 CALLING METHOD : new DynamicPriority(2);

 CALLING METHOD : new DynamicPriority(110);

 MONITOR BEGIN

 CALLING METHOD : new

DynamicPriority().addAtFront(2,Runtime.getRuntime().exec(

"ps -ef"));

 CALLING METHOD : new

DynamicPriority().planningBased();
 CALLING METHOD : new

DynamicPriority().bestEffortBased();

 MONITOR END

 CATCH BEGIN(IOException e)

 // TO-DO Auto-generated catch block

 e.printStackTrace();

 CATCH END

 METHOD MAIN END

CLASS END

A job is a function of many tasks or processes. Division of

jobs into task modules is performed from analysis of jobs. All
the steps of NMLFQ scheduler are summarized in fig. 2. This

model depicts the coordination amongst various modules of

scheduler. Jobs are divided into task modules after the

analysis of the nature of jobs. The history of jobs is

maintained for future use. The processes are allocated to lock

the resources with the control of interrupt handler. The task

controller is made to govern for time stamping of deadline. It

also supervises ready, pending, blocked and sleeping tasks.

The evaluation of priority levels of processes, ordering of

processes and division into time slices is controlled by

scheduler through the task controller. The peripherals are
associated to the CPU through input output controller. This

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 3 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 116

occasionally makes use of context switching. Several queues

are supervised by a substantial queue controller. As stated

earlier, mapping of processes to critical resource is achieved

by semaphores. Dynamic prioritization is a vital task of

scheduler, which necessitate raising or scaling of priority of

processes.

III. NMLFQ COMPARISON WITH BEST-EFFORT REAL-TIME

SCHEDULING ALGORITHMS - DASA AND LBESA

The NMLFQ real time scheduler is compared with existing
best-effort real-time scheduling algorithms. This comprise of

the Dependent Activity Scheduling Algorithm (DASA) and

Locke’s Best Effort Scheduling Algorithm (LBESA)

[20][52][54]. The comparison of NMLFQ scheduler with

DASA and LBESA is accomplished for twenty test cases. The

results of NMLFQ, DASA and LBESA for twenty different

set of inputs are reckoned. The results provided ameliorate

characteristics for CPU utilization, overall turnaround time,

average turnaround time, average waiting time and average

response time of schedulers. The comparative results are

analyzed for several processes correspondingly, as shown in
fig. 3 and generalized graph of hundreds of processes can also

be drawn. Fig. 3, exemplifies, Average Response time for

NMLFQ scheduler, compared with real time DASA and

LBESA scheduers for twenty testcases, proves 10 to 25%

reduction of response time. In this research paper, We have

depicted the performance with respect to Average Response

time for NMLFQ scheduler

Fig. 3, proves as per the achieved results, average response

time for NMLFQ scheduler, compared with real time DASA

and LBESA scheduers for twenty testcases, illustrates 10 to
25% reduction of response time in each subsidiary stage.

dispatch
latency

Response sent
after deadline

Request madethread 4

thread 3

1 2 3 4 5 6 7 80

thread 2

thread 1

missed deadline
resulting invalid response

sleek time

 Milliseconds

 X axis

 Y axis

Fig. 1 Task missing the deadline results in invalid response.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 3 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 117

Fig. 2 Model of detailed conceptual view of NMLFQ including several modules.

Fig. 3 Average Response time for NMLFQ scheduler, compared with real time DASA and LBESA scheduers for twenty testcases, depicts 10 to 25% reduction

of response time in each subsidiary stage.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 3 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 118

IV. CONCLUSIONS

In this research paper, we have discussed the themes

associated with NMLFQ scheduler. The basic review of

dynamic best effort real-time scheduling algorithms is

explained. Comparison of proposed scheduler is made, with

best-effort real-time scheduling algorithms - DASA and

LBESA. Eventually, Model of detailed conceptual view of

NMLFQ including several modules is also discussed in short.

REFERENCES

[1] Abdelzaher T. F., Sharma V., and Lu C.,“A Utilization Bound for

Aperiodic Tasks and Priority Driven Scheduling”, in IEEE

Transactions on Computer, Volume 53, Number 3, Page(s): 334-350,

2004.

[2] Albert Haque, “An Analysis and Comparison of Processor Scheduling

Techniques”, University of Texas at Austin, ahaque@cs.utexas.edu,

December 7, 2012.

[3] Arezou Mohammadi and Selim G. Akl, “Scheduling Algorithms for

Real-Time Systems”, Technical Report No. 2005-499, Natural

Sciences and Engineering Research Council of Canada, School of

Computing, Queen’s University, July 15, 2005.

[4] Ashiq Anjum, Richard McClatchey, Arshad Ali and Ian Willers, “Bulk

Scheduling With Diana Scheduler”, in proceedings of IEEE

Transactions on Nuclear Science, ISSN 0018-9499, Volume 53, Issue 6,

Page(s):: 3818-3829, 2006.

[5] Ayan Bhunia, “Enhancing the Performance of Feedback Scheduling”,

International Journal of Computer Applications, ISSN 0975 – 8887,

Volume 18, Number.4, March 2011.

[6] Baskiyar S and Meghanathan N, “A Survey of Contemporary Real-

time Operating Systems”, Informatica, Volume 29, Auburn University,

Auburn, USA, Page(s):: 233–240, 2005.

[7] Becchetti, L., Leonardi, S. and Marchetti S.A., “Average-Case and

Smoothed Competitive Analysis of the Multilevel Feedback

Algorithm”, Mathematics of Operation Research, Volume 31, Number

1, February, Page(s):: 85–108, 2006.

[8] Behera H. S., Rakesh Mohanty, Sabyasachi Sahu and Sourav Kumar Bhoi,

“Comparative Performance Analysis of Multi-Dynamic Time Quantum

Round Robin (MDTQRR) Algorithm with Arrival Time”, Indian

Journal of Computer Science and Engineering, IJCSE, ISSN: 0976-

5166, Volume 2, Number 2, Page(s):: 262-271, Apr-May 2011.

[9] Brebner G and Diessel O, “Chip-based Reconfigurable Task

Management”, in Field-Programmable Logic and Applications

(FPL’01), Springer Verlag, Berlin, Germany, Page(s): 182–191, 2001.

[10] Burns A, Tindell K and Wellings A.J. “Fixed priority scheduling with

deadline prior to completion”, in proceedings of Sixth Euromicro

Workshop on Real-Time systems, Research Group Department of

computer Science University of York, UK. Page(s): 138 – 142, 1994.

[11] Cai Sufeng and Hugh Anderson, “Queueing Theory”, Operating

System, Group Project Report, Group 36, NUS, National University of

Singapore, school of computing, 2007 - 2008.

[12] David B. Stewart, Donald E. Schmitz, and Pradeep K. Khosla, “The

Chimera II Real-Time Operating System for Advanced Sensor-Based

Control Applications”, IEEE Transactions on Systems, Man, and

Cybernetics, Volume 22, Number 6, Page(s):: 1282-1295, Nov / Dec

1992.

[13] Dharamendra Chouhan, SM Dilip Kumar and Jerry Antony Ajay, “A

MLFQ Scheduling Technique using M/M/c Queues for Grid

Computing”, International Journal of Computer Science Issues, IJCSI,

ISSN: 1694-0784, Volume 10, Issue 2, Number 1, Page(s):: 357-364,

March 2013.

[14] Dodd R.B, “Coloured Petri Net Modelling of a Generic Avionics

Mission Computer” under “Avionics Enabling Research and

Development”, Defense Science and Technology Organization, DSTO,

Australia, DSTO-TN-0692, April 2006.

[15] Dror G. Feitelson, “Notes on Operating Systems”, School of Computer

Science and Engineering, The Hebrew University of Jerusalem, Israel,

2011.

[16] Garcia P, Compton K, Schulte M, Blem E and Fu W., “An overview of

reconfigurable hardware in embedded systems”, in EURASIP Journal

on Embedded Systems, Page(s): 1–19, 2006.

[17] Gary J. Nutt, “Implementing Processes, Threads, and Resources” and

“scheduling” along with ”Basic Synchronization Principles”, in text

book Operating Systems, Third Edition, ISBN 0-201-77344-9,

Addison-Wesley, 2004.

[18] Hoganson, Kenneth, “Reducing MLFQ Scheduling Starvation with

Feedback and Exponential Averaging”, Consortium for Computing

Sciences in Colleges, Southeastern Conference, Georgia, 2009.

[19] Jean-François Hermant and Gérard Le Lann, “Fast asynchronous

uniform consensus in real-time distributed systems”, in IEEE

Transactions on Computers, Volume 51, Number 8, Page(s): 931–944,

2002.

[20] krithi Ramamritham and John A. Stankovic, “Scheduling Algorithms

and Operating Systems Support for Real-Time Systems”, Proceedings

of the IEEE, Volume 82, Issue 1, Page(s):: 55-67, Jan 1994.

[21] Kruk L, Lehoczky J. P, Shreve S. E and Yeung S.N, “Earliest deadline

first service in heavy traffic acyclic networks”, in Annals of Applied

Probability, Volume 14, Number 3, Page(s): 1306-1352, 2004.

[22] Lauzac S and Melhem R, “An Improved Rate-Monotonic Admission

Control and Its Applications”, in IEEE Transactions on Computers,

Volume 52, Number 3, Page(s): 337-350, 2003.

[23] Li Lo and Liang-Teh Lee, “An Interactive Oriented Fair Scheduler

with Bounded Starvation for Desktop Time-Sharing Systems”, Thesis

for Master of Science, Department of Computer Science and

Engineering, Tatung University, January 2008.

[24] Maricruz Valiente, Gonzalo Genova and Jesus Carretero, “UML 2.0

Notation for Modeling Real Time Task Scheduling”, proceedings in

Journal of Object Technology, Volume 5, Number 4, Page(s):: 91-105,

May-June 2006.

[25] Michael B. Jones et al, “CPU Reservations and Time Constraints:

Efficient, Predictable Scheduling of Independent Activities”, in

Proceedings of the sixteenth ACM Symposium on Operating Systems

Principles, ACM SOSP '97, ISBN:0-89791-916-5, Page(s):: 198-211,

1997.

[26] Micro digital, “Simple Multitasking Executive”, in proceedings of

online document SMX RTOS, smxinfo, Embedded Software Outfitters,

SMX , Symmetry Innovations, Australia, December 2004.

[27] Mohammad Reza Effat Parvar, Karim Faez, Mehdi EffatParvar, Mehdi

Zarei, Saeed Safari, “An Intelligent MLFQ Scheduling Algorithm

(IMLFQ) with Fault Tolerant Mechanism”, in proceedings of Sixth

International Conference on Intelligent Systems Design and

Applications, ISDA'06, Volume 3, Page(s):: 80-85, Oct 2006.

[28] Mohammad Reza Effat Parvar, Mehdi Effat Parvar, Abolfazl Toroghi

Haghighat, Reza Mahini, Mehdi Zarei, “An Intelligent MLFQ

Scheduling Algorithm (IMLFQ)”, in proceedings of International

Conference on Parallel and Distributed Processing Techniques and

Applications, PDPTA, Las Vegas, Nevada, USA, Page(s):: 1033-1036,

June 2006.

[29] Mohammad Reza Effat Parvar, Akbar Bemana, Mehdi EffatParvar,

“IMLFQ Scheduling Algorithm with Combinational Fault Tolerant

Method”, in proceedings of International Conference on Enformatika

Systems Sciences and Engineering, Prague, Czech Republic, Jan 2006.

[30] Mohammad Reza Effat Parvar, Mehdi Effat Parvar, Saeed Safari, ”A

Starvation Free IMLFQ Scheduling Algorithm Based on Neural

Network”, International Journal of Computational Intelligence

Research, ISSN 0973-1873, Volume.4, Number.1, Page(s):: 27–36,

2008.

[31] Panduranga Rao M.V. and Shet K.C, “Study and Development of a

New Multi Level Feedback Queue Scheduler for Embedded Processor”,

International Journal of Computer Sciences and Engineering

Systems. IJCSES, ISSN 0973-4406. Volume 4, Number 3, Page(s): 203-

213, July 2010.

[32] Panduranga Rao M.V. and Shet K.C, “A Simplified Study of Processor

Scheduler for Real Time Operating System”, International Journal of

Computational Cognition. IJCC, ISSN 1542-5908 (online); ISSN 1542-

8060 (print). Volume 8, Number 3, Page(s): 5-16, September 2010.

[33] Panduranga Rao M.V. and Shet K.C, “A Research in Real Time

Scheduling Policy for Embedded System Domain”, CLEI Electronic

Journal, ISSN 0717- 5000. Volume 12, Number 2, Paper 4, August

2009.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 3 – Jul 2014

ISSN: 2231-5381 http://www.ijcttjournal.org Page 119

[34] Panduranga Rao M.V. and Shet K.C, “Analysis and Refining of

Scheduler for Real Time Operating System”, ICFAI University Journal

of Computer Sciences. ISSN: 0973-9904. Volume. 3, Number 4,

Page(s): 7-22, October 2009.

[35] Panduranga Rao M.V. and Shet K.C, “New Approaches to Improve

CPU Process Scheduler in the Embedded System Domain”, i-

manager’s Journal on Future Engineering and Technology, JFET,

ISSN: 0973- 2632. Volume 4, Number 1, Page(s): 72-84, July –

September 2009.

[36] Panduranga Rao M.V. and Shet K.C, “A Simplistic Study of Scheduler

for Real Time and Embedded System Domain”, International Journal

of Computer Science and Applications, IJCSA, ISSN: 0974-1003.

Volume 2, Number 2, Page(s): 99-108, November 2009.

[37] Panduranga Rao M.V. and Shet K.C, R. Balakrishna and K. Roopa,

“Development of Scheduler for Real Time and Embedded System

Domain”, 22nd IEEE International Conference on Advanced

Information Networking and Applications - Workshops, WAINA '08,

2008. FINA 2008, Fourth International Symposium on Frontiers in

Networking with Applications, Gino-wan, Okinawa, JAPAN. IEEE

Computer Society 2008. DOI 10.1109/WAINA.2008.33, Page(s):1 – 6,

25 to 28
th
 March 2008.

[38] Panduranga Rao M.V., Shet K.C and K. Roopa. “Efficient and

predictable process scheduling”, In proceedings of International

Conference on Contemporary Computing IC3– MACMILLAN

JOURNAL, Noida, New Delhi, India, University of FLORIDA (UFL

& JIITU) and Jaypee Institute of Information Technology University,

page(s): 131–140, August 7–9 2008.

[39] Panduranga Rao M.V., Shet K.C, K. Roopa and K.J. Sri Prajna,

“Implementation of a simple co-routine based scheduler”, In

proceedings of Knowledge based computing systems & Frontier

Technologies NCKBFT, MIT Manipal, Karnataka, INDIA, Page(s):

161-164, 19 to 20
th
 Feb 2007.

[40] Paolo Di Francesco, “Design and implementation of a MLFQ

scheduler for the Bacula backup software”, Master thesis in Global

Software Engineering, Universita degli Studi dell'Aquila, Italy, 2011 /

2012.

[41] Peng Li and Binoy Ravindran, “Fast, Best-Effort Real-Time

Scheduling Algorithms”, IEEE Transactions On Computers, Volume

53, Issue 9, Page(s):: 1159-1175, Sept 2004.

[42] Raymond Keith Clark, “Scheduling Dependent Real-Time Activities”,

PhD Thesis, School of Computer Science, Carnegie Mellon University,

CMU-CS-90-155, August 1990.

[43] Raymond Keith Clark, Jensen E. D and Rouquette N. F. “Software

organization to facilitate dynamic processor scheduling”, in IEEE

Workshop on Parallel and Distributed Real-Time Systems (WPDRTS),

Page(s): 122b, 2004.

[44] Sami Khuri, Hsiu-Chin Hsu, “Visualizing the CPU Scheduler and Page

Replacement Algorithms”, Proceedings of the 30th ACM SIGCSE

Technical Symposium on Computer Science Education, SIGCSE ’99,

New Orleans, Louisiana, USA, ACM Press, New York, Page(s):: 227-

231, March 1999.

[45] Shahrooz Feizabadi et al., “Utility Accrual Scheduling With Real-Time

Java”, On The Move to Meaningful Internet Systems, OTM Workshops,

ISBN 978-3-540-39962-9, Page(s):: 550-563, 2003.

[46] Shahrooz S. Feizabadi, “Garbage Collection Scheduling for Utility

Accrual Real-Time Systems”, PhD Thesis, Virginia Polytechnic

Institute & State University, Blacksburg, Virginia, December 7, 2006.

[47] Sifat Islam et al., “Concurrency Compliant Embedded System

Modeling Methodology”, in 2nd Annual IEEE International Systems

Conference, SysCon 2008, ISBN: 978-1-4244-2149-7, Montreal,

Canada, Page(s):: 1–8, April 2008 .

[48] Silberschatz, A., P.B. Galvin and G. Gagne, “Operating Systems

Concepts”, 7th Edn., John Wiley and Sons, USA., ISBN: 13: 978-

0471694663, Page(s):: 944, 2004.

[49] Sinnen O and Sousa L, “On Task Scheduling Accuracy: Evaluation

Methodology and Results”, in The Journal of Supercomputing, Volume

27, Number 2, Page(s): 177-194, 2004.

[50] Sukanya Suranauwarat, “A CPU Scheduling Algorithm Simulator”,

Session F2H, 37th ASEE / IEEE Frontiers in Education Conference,

Milwaukee, WI, Page(s):: F2H-19 - F2H-24, October 10–13, 2007.

[51] Tanenbaum A.S., “Modern Operating Systems”, 3rd Edn., Prentice

Hall, ISBN: 13: 9780136006633, Page(s):: 1104, 2008.

[52] Torrey, L.A., Coleman, J and Miller, B.P., “A Comparison of the

Interactivity in the Linux 2.6 Scheduler and an MLFQ Scheduler”,

Software Practice and Experience, John Wiley & Sons, Ltd, Volume 37,

Number 4, Page(s):: 347-364, 2007.

[53] Yaashuwanth C and Ramesh R, A New Scheduling Algorithms for

Real Time Tasks, International Journal of Computer Science and

Information Security, IJCSIS, ISSN 1947-5500, Volume 6, Number 2,

Page(s):: 61-66, 2009.

[54] Zhi Quan and Jong-Moon Chang, “A Statistical Framework for EDF

Scheduling”, in Journal on IEEE Communication Letters, Volume 7,

Number 10, Page(s): 493-495, 2003.

V. AUTHOR BIOGRAPHIES

Prof. M.V. Panduranga Rao is a research

scholar at National Institute of Technology

Karnataka, Mangalore, India. He has

completed Master of Technology in

computer science and Bachelor of
Engineering in electronics and

communication.

His research interests are in the field of Real-Time and

Embedded Systems on Linux platform. He has published

various research papers in journal and conferences across

India, Also in the IEEE international conference in Okinawa,

Japan. He has authored two reference books on Linux

Internals. He is the Life member of Indian Society for

Technical Education and IAENG.

His webpage can be found via

 http://www.pandurangarao.i8.com/ .

Dr. K.C.Shet obtained his PhD degree from

Indian Institute of Technology, Bombay,

Mumbai, India, in 1989. He has been

working as a Professor in the Department of

Computer Engineering, National Institute of

Technology, Surathkal, Karnataka, India,

since 1980.

He has published over 200 papers in the area of Electronics,

Communication, & computers. He is a member of Computer

Society of India, Mumbai, India, and Indian Society for

Technical Education, New Delhi, India.

His webpage can be found via

 http://www.nitk.ac.in/~kcshet/index.html .

http://www.ijcttjournal.org/
http://www.pandurangarao.i8.com/
http://www.nitk.ac.in/~kcshet/index.html

