
International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 1 – Jul 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 46

The Study of Various Code Coverage Tools
Sneha Shelke, Sangeeta Nagpure
Deparment of Computer Engineering
K J Somaiya College of engineering
Mumbai University, Mumbai, India.

Abstract— Code coverage is used to describe the degree to which
the source code of a program is tested. There are many code
coverage testing tools available, working on different criteria
providing different features. Here we have studied five code
coverage tools and out of which one tool was actually evaluated
for their proposed features. A comparative study is presented on
the basis of the set criteria.

Keywords— software testing, code coverage, code coverage tools,
code coverage criteria.

I. INTRODUCTION
Software testing is used to indicate the software quality [12].
Software testing is a process of assuring a program is bug free
and also that it performs the intended functions which are
error free[12]. It is used to determine and improves the quality
of the software. Testing activities include obtaining the test
coverage. Code coverage [10] is a way of ensuring that your
tests are actually testing your code. When you run your tests
you are presumably checking that you are getting the expected
results.
The output of coverage measurement can be used in several
ways to improve the testing process. It also gives the
information to the user about the status of the verification
process. It can help to find areas that are not covered.
Test coverage is used to measure how the software is tested
and developers use it to indicate their confidence in the
readiness of their software. “A Survey of Coverage-Based
Testing Tools” studies and compares 17 coverage-based
testing tools primarily focusing on, but not restricted to,
coverage measurement [1]. All tools included in this survey
have coverage measurement capability. This survey compares
tools released before 2007 for three important coverage tool
characteristics.
There are several tools in order to facilitate the software
testing process, and they have different functionalities. Our
objective in this paper is to study the tools with code coverage
capabilities which are released after 2007.
We selected test tools with code coverage capabilities. We
have selected 5 tools out of which we have evaluated 1 tool
and all other tools are studied and compared based on the
literatures available.
This paper organized as follows. The section II describes the
overview of the coverage. Section III describes the 5 code
coverage tools. In section IV we have compared these tools
based on three measurement criteria: supported programming
languages, coverage measurement criteria, programming

instrumentation and automation. Finally section V
summarizes the work.

II. CODE COVERAGE
 Code Coverage [11] is the process of finding areas of a
program which are not exercised by set of test cases, which
creates additional test cases to increase coverage and
determines quantitative measure of code coverage. Coverage
based testing tool can be applied to any stage of testing
including unit, integration or system testing.
Code coverage provides quantification of coverage related test
progress, it prioritize the testing by selecting those tests that
has largest incremental gain in coverage. It detects redundant
cases and removes those cases since these much time to
execute repeatedly.
By using the code coverage testing process can be improved
and cost of correcting the errors can be reduced. Some of the
benefits of Code Coverage measurement

• To know whether we have enough testing in place
• To maintain the test quality over the life cycle of a

project
• To know how well our tests, actually test our code
• It creates additional test cases to increase coverage
• It helps in finding areas of a program not exercised

by a set of test cases
• It helps in determining a quantitative measure of

code coverage, which indirectly measures the quality
of the application or product.

Drawback of Code Coverage measurement:

• One drawback of code coverage measurement is that
it measures coverage of what has been written, i.e.
the code itself; it cannot say anything about the
software that has not been written.

• If a specified function has not been implemented or a
function was omitted from the specification, then
structure-based techniques cannot say anything about
them it only looks at a structure which is already
there.

III. CODE COVERAGE TOOLS

 A. EvoSuite
To find defects in software, one needs test cases that execute
the software systematically, and oracles that assess the
correctness of the observed behavior when running these test

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 1 – Jul 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 47

cases. EvoSuite [3] [4] is a tool that automatically generates
test cases with assertions for classes written in Java code. To
achieve this, EvoSuite applies a novel hybrid approach that
generates and optimizes whole test suites towards satisfying a
coverage criterion. For the produced test suites, EvoSuite
suggests possible oracles by adding small and effective sets of
assertions that concisely summarize the current behavior;
these assertions allow the developer to detect deviations from
expected behavior, and to capture the current behavior in
order to protect against future defects breaking this behavior.

B. JavaCodeCoverage (JaCoCo)
JavaCodeCoverage [5] is a byte-code analyser tool for test
coverage analysis for Java software which neither requires
neither the language grammar nor the source code. An
important aspect of JavaCodeCoverage is that it stores the
coverage information for individual test case thereby
facilitating detailed coverage analysis. Another important
aspect of JavaCodeCoverage is that it records all vital code-
elements and test coverage information in open source
database software MySQL.
C. Automatic Robustness Coverage Analysis Tool (AURORA)
AURORA [6] [7] is a tool that provides testers with the
capability of computing the extended coverage achieved by a
certain test suite ts over a program p in an automated way.
The tool accepts code transformations defined by means of the
TXL language, and uses standard coverage measurement
libraries to compute the coverage achieved by ts on p, and
using the transformations it automatically computes the
fragility indexes.
D. Dynamic Code Coverage (DCC)
Dynamic Code Coverage [9] is an easy-to-use tool that
indicates which source code is exercised during one or more
executions of a program. This information is invaluable in
determining how thoroughly a test suite exercises a program.

E. Open Code Coverage Framework (OCCF)
There are many programming languages and coverage criteria
exist, and every coverage measurement tools support
programming language and the coverage criteria. So many
tools exist and they have various programming languages that
lead to difference between the existing tools. To overcome the
diversity of existing tool, a novel approach for measuring the
coverage for multiple programming languages called open
code coverage framework.[8] [10] [13]

IV. COVERAGE MEASUREMENT CRITERIA

 All tools support coverage measurement capability [11]. It
consists of supported languages, program instrumentation,
coverage measurement, automation. We have studied 5 code
coverage tools out of these we have evaluated java code
coverage tool and all other tools studied based on the available
literature.

A. Supported languages

 Every tool supports programming languages. Some of them
support only java, some of them support only C/C++, some of

them support both java and C/C++, some of them supports
FORTRAN, C#,.NET. Table I shows a list of tools and the
languages they support.
The selection of supported languages reflects each company’s
target industries. EvoSuite [3] [4] is a tool that automatically
generates test cases with assertions for classes written in Java
code. Java Code Coverage [5] is a byte-code analyser tool for
test coverage analysis for Java software which requires neither
the language grammar nor the source code.
To overcome the diversity of existing tools, a novel
framework developed for consistently and flexibly measuring
the coverage supporting multiple programming languages,
called Open Code Coverage Framework (OCCF) [10]

TABLE I
SUPPORTED LANGUAGE

Tool Name C/C++ Java Other
EvoSuite --  --
JaCoCo --  --

AURORA --  --
DCC  -- --

OCCF   

B. PROGRAM INSTRUMENTATION

Coverage-testing tools capture coverage information by
monitoring program execution. Execution is monitored by
inserting probes into the program before or during its
execution. A probe is typically a few lines of code that, when
executed, generate a record or event that indicates that
program execution has passed through the point where the
probe is located. There are two kinds of overhead associated
with instrumenting a program with probes:

• The off-line overhead :
It cannot be used source code is not available. They
are most efficient in terms of compilation time but
less portable.

• The run time overhead :
The tools which are provided for system software or
embedded software, they tend to focus on reducing
the run time overhead, so their tools can be usable in
real time environment.

The EVOSUITE [4] tool implements the approach presented
for generating JUnit test suites for Java code. EVOSUITE
works on the byte-code level and collects all necessary
information for the test cluster from the byte-code via Java
Reflection. This means that it does not require the source code
of the SUT and in principle is also applicable to other
languages that compile to Java byte-code.

OCCF [10] inserts instrumentation code into source code. The
abstract syntax trees of source code for most programming
languages have similar structure. Thus OCCF provides a
reusable common code to insert instrumentation code through
AST’s by utilizing the similarities.

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 1 – Jul 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 48

TABLE II
PROGRAM INSTRUMENTATION

C. COVERAGE MEASUREMENT CRITERIA

There are varieties of coverage measurement criteria [11] such
as statement or line coverage, decision coverage, block
coverage, function/method coverage. The statement coverage
[11] is also known as line coverage or segment coverage. The
statement coverage covers only the true conditions. Through
statement coverage we can identify the statements executed
and where the code is not executed because of blockage.
Decision coverage [11] is also known as branch coverage or
all-edges coverage. It covers both the true and false conditions
unlikely the statement coverage. Condition coverage reports
the true or false outcome of each condition. Condition
coverage measures the conditions independently of each other.
Functional coverage [11] is a measure of which design
features have been exercised by the tests. Functional coverage
is tied to the design intent and is sometimes called
“specification coverage,” while code coverage measures the
design implementation.

TABLE III
 COVERAGE MEASUREMENT CRITERIA

Tool name Statement/
Line

Branch/
Decision

Method/
Function

Evosuite --  --

JaCoCo   

AURORA  -- --

DCC   

OCCF   --

V. AUTOMATION

Automation Testing [14] is used to re-run the test scenarios
that were performed manually, quickly and repeatedly.
Automation of testing process includes number of steps such
as test case generation, test execution and creation of test
oracles It increases the test coverage; improve accuracy, saves
time and money in comparison to manual testing. Automated
test generation tends to be linked with code coverage, i.e. the
goal of generating test automatically can easily be linked to
the goal of increasing coverage. EvoSuite is a tool that
automatically generates test cases with assertions for classes
written in Java code

VI. CONCLUSIONS
 We have studied 5 code coverage-based testing tools. Our
study includes the comparison of three features: Code
coverage measurement, Coverage criteria, Automation

Out of these we have evaluated java code coverage tool and
all other tools are evaluated basis on the paper. Java code
coverage tool effectively used for bug place identification as
well as condition/decision coverage evaluated both as true and
false. All other tool studied on the basis of paper and
summarize in the following table.

TABLE IV
 SUMMARY OF CODE COVERAGE TOOL

 Evosuite JaCoCo AURORA DCC OCCF

Supported
languages

Java

Java

C

Java

C,C++,java,

python,

JavaScript,

ruby, Lua

No.
Coverage
criteria

1

4

3

4

4

Instrument
ation

Byte

code

Byte

code

--

Byte

code

Source code

Automatio
n

Yes Yes No Yes No

ACKNOWLEDGMENT
“No matter how big or small an endeavor is, we do nothing in
vacuum” I do it with supporting roles of many others who
have helped us directly or indirectly. This paper will not be
complete without thanking to people who encouraged us and
gave many suggestions and updating with patience and
tolerance.
It is my privilege to acknowledge with deep sense of gratitude
to my Guide Mrs. Sangeeta Nagpure, for her valuable
suggestions and guidance. She took interest in checking the
minute details of the paper and guided me throughout the
same.
I express my deepest thanks and gratitude to Prof. Jyothi M
Rao and all the staff members for their constant
encouragement and support. I am sincerely thankful to our
HOD Prof. H N Bharathi.
 Also thankful to my colleagues and friends, who backed my
interest and helped me out during our times of trouble. I also
thank all the unseen people on the internet through which me
able to gather the necessary ideas and concepts required for
my paper.

Tool Name Source-Code
Instrumentation

Byte-Code
Instrumentation

EvoSuite -- 

JaCoCo -- 

AURORA -- 

DCC  --

OCCF  --

International Journal of Computer Trends and Technology (IJCTT) – volume 13 number 1 – Jul 2014

ISSN: 2231-2803 http://www.ijcttjournal.org Page 49

REFERENCES
[1] Qian Yang, J. Jenny Li, David M. Weiss, “A Survey of Coverage-

Based Testing Tools”, Published in The Computer Journal (2009),
volume 52 (5): pp. 589-597.

[2] Williams, B. S. a. L. (2008). "A Survey on Code Coverage as a
Stopping Criterion for Unit Testing.", Technical report (North Carolina
State University. Dept. of Computer Science), TR-2008-22.

[3] G. Fraser and A. Arcuri, “Evolutionary Generation of Whole Test
Suites,” Proc. 11th Int’l Conf. Quality Software, pp. 31-40, 2011.

[4] G. Fraser and A. Arcuri, “Evosuite: Automatic Test Suite Generation
for Object-Oriented Software,” Proc. 19th ACM SIGSOFT Symp. and
the 13th European Conf. Foundations of SoftwarEng., 2011

[5] R. Lingampally, A. Gupta, P. Jalote. "A Multipurpose Code Coverage
Tool for Java," In Proceedings of the 40thAnnual Hawaii International
Conference on System Sciences, IEEE Computer Society, 261b, 2007.

[6] Angelo Gargantini, Marco Guarnieri and Eros MagriAURORA:
AUtomaticRObustnesscoveRage Analysis Tool in 6th IEEE
International Conference on Software Testing, Verification and
Validation - Testing Tools Track (ICST 2013)

[7] Angelo Gargantini, Marco Guarnieri, Eros MagriExtending Coverage
Criteria by Evaluating their Robustness to Code Structure Changes in

23rd International Conference on Testing Software and Systems
(ICTSS 2012 - Acceptance rate: 33%)

[8] Kazunori Sakamoto, et al.,”A Framework for Measuring TestCoverage
Supporting Multiple Programming Languages”,First Software
Engineering Postgraduates Workshop (SEPoW 2009; In conjunction
with APSEC 2009), 2009. Sakamoto

[9] Dynamic Code Coverage for Sun Solaris, Linux, and HP UX @
http://www.dynamic-memory.com/

[10] K., H. Washizaki, et al. (2010). “Open Code Coverage Framework: A
Consistent and FlexibleFramework for Measuring Test Coverage
Supporting Multiple Programming Languages”, In the 10thInternational
Conference on Quality Software, QSIC,2010, pp. 262-269

[11] http://en.wikipedia.org/wiki/Code_coverage
[12] http://en.wikipedia.org/wiki/Software_testing
[13] https://nuget.org/packages/OpenCodeCoverageFramework
[14] http://en.wikipedia.org/wiki/Test_automation

