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Abstract—In this paper we are going to evaluate the efficacy 
of FEC coding.  To evaluate it we are going to transfer data 
from Source to Destination. Before receiving the data in the 
Destination we create packet loss in Queue. Thus after 
creating packet loss, we receive the remaining packets in 
the Destination. Then we recover the lost Packets in the 
Destination and evaluate FEC’s performance. 

I INTRODUCTION 
 
     Packet level transport service is provided by 
representative packet-switched networks, including IP 
networks, but is not reliable and the quality-of-service 
(QoS) cannot be guaranteed. Packets may be lost due to 
buffer overflow in switching nodes, be discarded due to 
excessive bit errors and failure to pass the cyclic 
redundancy check (CRC) at the link layer, or be 
discarded by network control mechanisms as a response 
to congestion somewhere in the network. 
 
     Forward error correction (FEC) coding has often 
been proposed for end-to-end recovery 
from such packet losses. FEC can help recover the lost 
packets in a timely fashion through the use of redundant 
packets, In this paper, we will study the overall 
effectiveness of packet-level FEC coding, using 
interlaced Reed-Solomon codes, in combating network 
packet losses and provide an information-theoretic 
methodology for determining the optimum compromise 
between end-to-end performance and the associated 
increase in raw packet-loss rates using a realistic model-
based analytic approach.  
 
    Reed-Solomon codes are examples of error correcting 
codes, in which redundant  information is added to data 
so that it can be recovered reliably despite errors in 
transmission or storage and retrieval. In order to 
compute the weight and decode more easily, we need to 
use linear codes with special properties. Usually the 
special properties are based on algebra, in which case the 
code is called an algebraic code. The Reed-Solomon 
codes that we will now define are examples of algebraic 
codes. Let p be a prime number and let m≤ n ≤ p. The 
Reed-Solomon code over the field Zp with m message 
symbols and n code symbols is defined as follows. Given 
a message vector [x1 x2…. xm], let P(t) be the polynomial 

 
         P(t) = xmtm-1 + xmtm-2 + ……+x2t + x1 
 
   on the other hand, from the network’s perspective, the 
widespread use of FEC schemes by end nodes will 
increase the raw packet-loss rate in a network because of 
the additional loads resulting from transmission of 
redundant packets. Therefore, in order to optimize the 
end-to-end performance, in terms of the amount of 
redundancy added, and its effect on network packet-loss 
processes, needs to be investigated under specific and 
realistic modelling assumptions. 
 
    So, for a given choice of block length we expect that 
there is an optimum choice of redundancy, or channel 
coding rate, since a rate too high (low redundancy) is 
simply not powerful enough to effectively recover 
packet losses while a rate too low (high redundancy) 
results in excessive raw packet losses due to the 
increased overhead which overwhelms the packet 
recovery capabilities of the FEC code. The optimum 
channel coding rate results in an optimum compromise 
between these two effects. 
 
     In a packet-switched network, a flow of packets 
crosses a chain of routers before it reaches the 
destination node as shown in below figure. Most of the 
packet losses from a flow occur in the router which has 
the smallest bandwidth. Therefore, we can model the 
whole chain of routers in terms of this single bottleneck 
node. A single-multiplexer model for this bottleneck 
node is widely used to analyze the associated queueing-
related packet losses, e.g., losses due to buffer overflows 
and excessive delays. Since the correlation level of the 
packet-loss process has great impact on the FEC 
efficacy, we investigate this dependence using the 
autocorrelation function of the packet-loss process. 
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Fig.1. Packet Switching 

    
 A novel technique based on forward error correction 
(FEC) has been proposed that allows the destination to 
reconstruct missing data packets by using redundant 
parity packets that the source adds to each block of data 
packets.  
 
    In this work, we focus on evaluating the capability of 
FEC in recovering packet losses over IP networks using 
residual packet-loss rate as the performance measure. 
We describe the network packet transport channel in 
terms of a single multiplexer modeled as a G/M/1/K 
queue (single session) and/or an N*M/M/1/K queue 
(multiple sessions). This allows the use of more general 
packet-arrival processes and random packet lengths 
representative of evolving IP network applications. FEC 
coding performance combined with interleaving was also 
studied for the case of both a single session and multiple 
sessions. For the case of a single session, our approach to 
the analysis of interleaving is similar to the approach that 
is already described. But for the case of multiple 
sessions, we must provide a much simpler algorithm to 
analyze the effect of interleaving than the already 
existing approach. Using this approach we demonstrate 
the behavior of the resulting packet-loss statistics as a 
function of interleaving depth. The approach is useful in 
exploring the tradeoffs between coding parameters, such 
as interleaving depth, code rate Rc and block length. The 
approach is useful in exploring the tradeoffs between 
coding parameters, such as interleaving depth, code rate 
and block length. 

II   NETWORK MODELS USED TO EVALUATE 
PERFORMANCE OF FEC 

Single-Multiplexer Network Model: 
   To compare the packet-loss statistics quantitatively 
here we are using one model called single-multiplexer 
model. As illustrated in Fig. 1, the single-multiplexer 
model is a queuing system which consists of three 
components: 1) an arrival process for packets from N 
different sources with corresponding packet arrival rates 
λi, 1≤i≤N ; 2) a buffer which can hold up to K packets, 
which are assumed to be served in first-come-first-
served (FCFS) order; and 3) an output link with average 
packet service rate µ.   
 
                                                                                                                                  
 

 
    
 
 
 
 
Fig. 3.   Single-multiplexer network model. 
 
 
The arriving packets to the multiplexer may come from a 
single source (N=1) or multiple- sources (N≥2). The 
single-source (N=1) case corresponds to a network 
which can apply per-flow control for the traffic, i.e., the 
network reserves fixed bandwidth for each traffic flow. 
The multiple-source (N≥2) case represents a network in 
which no per-flow control is applied and packets from 
different sources share the output bandwidth and the 
buffer. 
III SYSTEM MODEL FOR FEC PERFORMANCE 
EVALUATION 
 
     Consider the communication system model illustrated 
in Fig. 2. We suppose there are N homogeneous and 
independent sources sharing the single-multiplexer and 
each source generates packets with average rate λi. The 
FEC coder for each source applies an interlaced Reed-
Solomon code RS(n,k) to the packets from the source, 
which means for every block of K source information 
packets it creates an additional n-k parity packets to the 
network. The channel coding rate is given by Rc=k/n. 
Assume P(j,n) denotes the block-error distribution, 
i.e., the probability that packets out of n are lost. 
Therefore, the expected number of lost packets within a 
block is 

                            

 
 
Fig.4 .   Communication system model. 
 
 
 
VI  FEC PERFORMANCE WITH A SINGLE SOURCE 
 
A. FEC Without Interleaving 



International Journal of Computer Trends and Technology- July to Aug Issue 2011 

 

ISSN: 2231-2803  http://www.internationaljournalssrg.org  Page 189 

 

 
We begin our analysis with the simplest case: there is 
only one user for the multiplexer (N=1). As illustrates, 
the key  quantity in evaluating the residual packet-loss 
rate after FEC decoding is P(j,n) , the block-error 
distribution for an arbitrary number n of consecutive 
packets. In Cidon et al. propose a recursive algorithm to 
compute P(j,n) for the finite buffer queue with Poisson 
arrivals and exponential service times, denoted as the 
M/M/1/K queue. In order to analyze the packet losses for 
more general arrival patterns, in what follows we first 
describe the extension of the algorithm to the G/M/1/K 
queue, i.e., the finite buffer queue with general i.i.d. 
interarrival times and exponential service times. 
 
1) Analysis of Block-Error Distribution:   Suppose there 
is only one source sharing the multiplexer(N=1) and the 
packet interarrival times are i.i.d. with arbitrary 
probability density 
Function a(t). 
 

 
            

 
                                                                     

 
 
 
 

 
2) Numerical Examples:  Fig. 6 demonstrates the 
effective packet-loss rates PLReff according to computed  
with different coding block size n=63,127,255, and 511 
as a function of coding rates  Rc=k/n. 
 
B. FEC With Block Interleaving 
 
FEC performance is often limited by the bursty nature of 
typical packet-loss processes, and block interleaving 
techniques are frequently used to reduce the burstiness of 
the packet-loss processes in networks, thereby improving 
FEC performance. In this section, we analyze the 
efficacy of interleaving in reducing the burstiness of 
network packet-loss processes and in 
improving the FEC performance. 
 

1) Interleaving Operation:    The operation of 
block interleaving is illustrated in Fig:13. 
Before being transmitted into the network, 
packets are filled into an M1*M2 Row wise. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.   Illustration of block interleaving operation (interleaving depth 
=M1). 
 
Fig. 7 shows the case of deterministic arrivals(h=∞)with 
all other system parameters the same as in Fig. 6 
Compared to Fig. 6, Fig. 5 shows that for more 
deterministic source arrivals an increased coding rate Rc 
is required to achieve the optimum performance. Both 
figures demonstrate that with interleaving the 
performance ofFEC coding can be greatly improved, and 
interleaving with even larger depth can achieve 
increasingly improved performance. 
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Fig: 8. Evaluate interleaving FEC performance possion arrival 
 

 
Fig: 9. Evaluate interleaving FEC performance 
deterministic arrival 
 
 

IV. FEC PERFORMANCE WITH MULTIPLE 
SOURCES (N>1) 

 
In Section III-A, we studied the FEC performance when 
there is only a single source using the multipplexer. In 
this section, we proceed to investigate FEC performance 
in case of multiple sources sharing the multiplexer. In 
order to facilitate the analysis,in this section we assume 
the packet arrival process seen by the multiplexer from 
each source is Poisson. 
 
A. FEC Performance Without Interleaving 
 
            In order to evaluate the FEC performance for one 
of the N sources, the block-error distribution P(j,n). for a 
single isolated source is required. Cidon et al. In this 
work, however, we describe a different method to 
compute P(j,n) for the N*M/M/1/K. queue, which can 
be extended easily to incorporate the analysis for 
interleaving in Section IV-B. 
 
1) Analysis of Block-Error Distribution for a Single 
Source: 

      Assume the packets arriving at the single-multiplexer 
come from N independent sources: S1,S2……Sn.   
indicates that, for N homogeneous sources with a fixed 
overall load  ρ, the loss process of a single source 
becomes less and less correlated with increasing N . 
 

 

 
 
Fig. 10. FEC performance with N homogeneous sources; Poisson 
arrivals, load from each source fixed at  ρi=0.02,K=10 block size n=63 
 

 
Fig. 11. Multiplexing gain achieved by FEC coding with different 
coding block sizes n; Poisson arrivals, the effective packet-loss rate 
fixed at PLReff= 10-6, load from each source fixed at  ρi=0.02,K=10. 

Now we study the FEC performance in improving the 
statistical multiplexing gain. As shown in Fig. 2, we 
suppose the FEC coder for each homogeneous source 
applies an RS(n,k)code to the packets from the 
corresponding source coder. The channel coding rate 
remains Rc = k/n. As a result of the channel coding, the 
packet arrival rate into the single-multiplexer will 
increase to λ1 = λi/Rc. We assume that the average load 
from each source is fixed while the total load ρ = λ/μ 
changes with varying N.  

             Fig. 6 demonstrates the FEC performance with 
different numbers of sources multiplexed, where the load 
from each source is fixed at λi  = 0.02 with buffer size K 
= 10 and coding block size n=63 . It shows that, with an 
increase in the number of sources N, the effective 
packet-loss rates increase due to the increased system 
load . Suppose now the load from each source is again λi  
= 0.02 and the required effective packet-loss rate is 10-6. 
Fig. 20 demonstrates the maximum number of sources 
that can be multiplexed under these conditions. In 
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particular, it shows that, compared to the case where no 
coding is used (Rc = 1), with FEC coding the maximum 
N that can be multiplexed can be increased significantly 
provided that Rc is selected appropriately, and coding 
with larger block sizes can achieve even larger 
multiplexing gain. 

B. FEC Performance With Interleaving 

Now we suppose the packets from each homogeneous 
source are interleaved with the same interleaving depth 
before being transmitted into the network. The algorithm 
for computing the block-error distribution P(j,n) for a 
single source can be extended to include the interleaving 
procedure, as provided in Section III-B. It can be 
expected that, compared to the case of a single source 
(N=1), the need for interleaving will be significantly 
reduced in a multiplexing environment (N ≥ 2), due to 
the already reduced packet-loss correlation as a result of 
the natural interleaving effect of multiplexing. Fig. 11 
shows the to the already reduced packet-loss correlation 
as a result of the natural interleaving effect of 
multiplexing. Fig. 11 shows the 

 
 

Fig. 12. Multiplexing gain achieved by FEC coding with different 
coding block sizes n; Poisson arrivals, the effective packet-loss rate 
fixed at PLReff= 10-6, load from each source fixed at  ρi=0.02,K=10. 

        FEC performance with different interleaving 
depths, where the number of sources is N = 3 and the 
total system load is fixed at ρ =0.8 
 
(Scenario 1) with buffer size K = 10 . As expected, when 
, in order to optimize the FEC performance, an 
interleaving depth M ≥ 10is required, while in Fig. 15 
where N=1 an interleaving depth M ≥ 28is required. This 
point is further illustrated in Fig. 22, which demonstrates 
the interleaving depth required to approach the optimum 
FEC performance with different numbers of sources N 

for a given total load ρ=0.8. It shows that when the 
number of sources N increases, the need for interleaving 
depth decreases, which means reduced latency 
associated with the interleaving/deinterleaving operation. 
The figure shows that, when N ≥ 14, interleaving makes 
an insignificant difference in FEC performance, because 
in this case the packet-loss process of each source is 
nearly independent. 

 

Fig. 13. Effect of interleaving on FEC performance with  N=3 sources; 
Poisson arrivals, total load fixed at ρ = 0.8, K = 10, n=63. 

 

Fig. 14. Interleaving depth needed to approach maximum FEC 
performance versus the number of sources multiplexed n; Poisson 
arrivals, total load fixed at ρ = 0.8, K = 10, n=63 

V. POTENTIAL OF FEC AND AN INFORMATION-
THEORETIC BOUND 

In Fig. 17, we demonstrated that, with the same packet-
loss rate requirement, FEC coding with a larger block 
size can support increased source traffic. However, the 
source traffic that can be supported is not unlimited 
because of the channel capacity limitation imposed by 
the single-multiplexer transport channel model. In what 
follows we develop an information-theoretic upper 
bound on the FEC performance based on the single-
multiplexer network model. In this section, we only 
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consider the case of a single source (N = 1), although the 
approach can be extended to arbitrary N . 

A. Channel Model for Packet Transmission                      
Over Networks       

Consider a channel model for packet transmission over a 
general packet-switched network. Assume a packet has 
mbits. It is either transmitted and received by the 
receiver, or is lost due to network congestion or buffer 
overflow. For a received packet, bit errors may be 
introduced. Then packet transmission over networks can 
be modeled for coding purpose in terms of serial bit-by-
bit transmission of m-bit symbols either over a binary 
symmetrical channel (BSC) with crossover probability ρ 

 

Fig. 15. Component channels of BIC corresponding to packet delivery 
and loss. 

 

Fig. 16. Simplified communication system model. 

(state 0) or over a binary erasure channel (BEC) (state 
1), both of which are illustrated in Fig. 16 where ǿ is 
used to indicate the erasure symbol.A lost packet 
corresponds to the entire codeword symbol of m  bits 
being erased, while a received packet means each of the 
m bits is sequentially transmitted over the BSC. This 
channel model belongs to the class of block interference 
channels (BIC), introduced by McEliece and Stark . Let 
S € {0,1} represent the state space of the BIC. If the state 
transitions are independent, then the Shannon capacity of 
the BIC is given as , 

C = Es{Cs}; bits/transmission      (1) 

Where Cs is the capacity of the component channel s € 
S, and the expectation is over the state space S. It 
follows that 

  

C =  (1-ρ) * (1-H(p)); bits/transmission,  (2) 

where ρ  is the probability of being in the loss state and 
H(p) is the binary entropy function, 

H(p) = -plogp-(1-p)log(1-p); 0 ≤ p ≤ 1.  (3) 

B. Information-Theoretic Bound on FEC Performance 

Referring to Fig. 12, suppose the interleaving is ideal, 
and consequently the packet-loss process seen by the 
channel decoder is independent. If we consider the 
interleaver and the deinterleaver as components of the 
coding channel, then the channel, consisting of the 
interleaver, the single-multiplexer and the deinterleaver, 
can be modeled as a BIC with independent state 
transitions, as illustrated in Fig. 14. Here we consider 
only the packet losses caused by the buffer overflows, 
and assume no bit errors, i.e., the BSC crossover 
probability p=0. Let PL be the packet loss rate of the 
single-multiplexer, so p= PL. Then, from (4), 

the capacity of the BIC is given by 

C=(1-p)*(1-H(p))=1- PL       (5) 

Assume the source creates packets at rate λ and the 
packet service rate is µ. Then the normalized system load 
before coding is ρ = λ/μ. The channel encoder applies 
channel coding (not necessarily RS codes) with coding 
rate Rcto the source traffic. 

 

Fig.17. Schematic illustration of the functional relationship C =1 – f ( ρ 
/ Rc ), for different values of ρ  with ρ1  ≤  ρ 2≤  ρ3  

Then the normalized system load after coding will 
increase to ρ1 = ρ/Rc 

.      Given the buffer size K, the average raw packet loss 
rate PL depends only on the load  ρ1, as expressed by 
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                    PL  = f(ρ1 ) = f(ρ / Rc)    (6)       

where the function f can be determined by queueing 
analysis of the single-multiplexer model, which has been 
described in Section III-A1. From (5) and (6) we have, 

    C = 1 - PL  = 1 – f(ρ / Rc)    (7) 

From (7), for a given load , we can plot the functional 
relationship of C with Rc, as illustrated in Fig. 25. The 
channel coding theorem establishes that any rate less 
than the channel capacity can be supported with arbitrary 
low error probability. In other words, with regards to our 
model discussed here, as long as the channel coding rate 
Rc is smaller than the BIC capacity C, the source rate 
can be supported with arbitrarily high reliability. 
Therefore, in Fig. 17 the area above the line C = Rc, 
denoted by A1, where Rc < C, represents the source rates 
that can be supported with arbitrarily high reliability. 
The area below the line C = Rc, denoted by A2, 
represents the source rates that will inevitably incur 
some loss regardless of the channel coding scheme 
employed. For example, from Fig. 17 for the coding rate 
Rc1, the maximum source rate that can be supported with 
arbitrarily high reliability is ρ1. More generally, for the 
coding rate Rc, the maximum source rate that can be 
supported with arbitrarily high reliability is     

     ρmax
 = max{ρ : Rc ≤ 1 – f(ρ /Rc)}   (8) 

For example, for the M/M/1/K queue model, we have a 
closed-form expression for f(ρ1): 

       PL = f(ρ1) = (1 - ρ1 ) (ρ1)k   /1- (ρ1)K+1   (9) 

From (31), (32) and (33), after some simplification, we 
have  

   .ρmax
 = max{ρ : Rc ≤ [(Rc -ρ ) * ρ K]/[R k+1 - ρ k+1]}(10) 

 

Then, for a given buffer size K and choice of Rc, the 
maximum source load that can be supported with 
arbitrarily high reliability can be obtained from (10) by 
simple numerical search. 

 

 
 
Fig. 18. The upper bound on the source loads ρmax   predicted by the 
channel capacity considerations, compared to the maximum source 
loads  ρmax that can  be supported at a fixed effective packet-loss rate 
PLReff = 10 -5 using FEC coding; Poisson arrivals, ideal interleaving,  

 

Fig. 19. The upper bound on the source loads ρmax  predicted by the 
channel capacity considerations, compared to the maximum source 
loads ρmax  that can be supported at a fixed effective packet-loss rate  
PLReff = 10 -5  using FEC coding; Poisson arrivals, ideal interleaving, K 
= 5.       For more general cases, the maximum source 
load ρmax can be obtained from (8). 

          Corresponding to Fig. 17 for the M/M/1/K model, 
Fig. 18 shows the upper bound on the source loads that 
can be supported as predicted by the preceding channel 
capacity considerations. It shows that with increasing 
coding block size the end-to-end performance achieved 
by FEC coding approaches that predicted by channel 
capacity. Fig. 19 shows the case of a smaller buffer ( K = 
5). The two figures indicate that, generally, the system 
with a larger buffer has a larger capacity. Note that in 
these two figures the capacity C is the capacity of the 
single-multiplexer combined with an ideal 
interleaver/deinterleaver, and not the capacity of the 
single-multiplexer itself. Actually, the capacity of the 
single-multiplexer channel can be greater than C 
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described here since the capacity of the memoryless 
interleaved channel is generally lower than the capacity 
of the original channel . 

VI. CONCLUSIONS AND FUTURE 

We have analyzed the efficacy of FEC in combating 
network packet losses based on a single-multiplexer 
network model and demonstrated that FEC has great 
potential in recovering the packet losses caused by 
congestion at a bottleneck node of a packet-switched 
network, provided that the coding rate 

and other coding parameters are appropriately chosen. 
We developed a discrete-time Markov chain model to 
analyze the efficacy of interleaving in improving the 
FEC performance and determined how much 
interleaving depth is required for FEC to approach the 
optimum performance. We derived an upper bound on 
the end-to-end performance using FEC based on an 
information-theoretic methodology, which is useful in 
predicting source rates that can be supported with 
arbitrarily high reliability.  

                   Despite the great potential of FEC coding in 
recovering network packet losses, the implementation 
complexity of FEC coding and the corresponding 
coding/decoding delay also need to be considered, which 
is an issue particularly important for real-time 
applications. One objective for future work is the 
analysis of the additional delay caused by the FEC 
coding, perhaps combined with 
interleaving/deinterleaving. Likewise, the application of 
FEC for network transport is limited by the time-varying 
and often uncertain error characteristics of the channel, 
which makes the appropriate choice of FEC coding rate 
difficult to determine. In real-world applications, FEC 
coders are required which can adapt the channel code 
rate to the time-varying channel conditions. This issue is 
also a topic for future work. 
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