
International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 24

Wave File Encryption using Huffman

Compression and Serpent Algorithm

Parasian D.P Silitonga#1, Imka Ardianta Singarimbun*2, Irene Sri Morina#3
#
Faculty Of Computer Science & St. Thomas Catholic University

Setia Budi Medan, Indonesia

Abstract
 Wave file (.wav) is a standard audio file used

by Windows. Sound recording files (* .wav) tend to

have a large size, according to the length of time

sound recording. Large files can cause various

problems in the form of large space requirements for

listening and a long time in the shipping process. File

compression is one solution that can be done to

overcome large file size problems. One method of file

compression is to use the Huffman compression

method. In addition to problems in space and length

of delivery time in the file processing process, data

security factors are also a problem that continues to

this day. The Serpent algorithm is one of the data

cryptography algorithms that can be used to maintain

data confidentiality. Serpent is a block cipher

algorithm that has a block size of 128 bits and

supports key sizes of 128, 192, or 256 bits. The results

obtained in this study are the Huffman compression

ratio and the implementation of the Serpent algorithm

performed on wave files.

Keywords —Wave File, File Compression, Huffman

Method, Criptography, Serpent Algorithm

I. INTRODUCTION

Wave file (.wav) is a standard audio file used by

windows [1]. Sounds in wave form are stored in

digital audio data format in * .wav files. Sound

recording files (* .wav) tend to have a large size,

according to the length of time sound recording.

In the process of storing and sending data, large

files have constraints that require large space to store

and require a long time to send. To overcome this, file

compression can be done. Compression is the process

of encoding information using fewer bits than the

initial information [10]. There are two types of

compresses, namely lossless and lossy [17].

Huffman compression is a lossless compression

algorithm and is ideal for compressing text or

program files [16]. Huffman compression is included

in the variable codeword length algorithm [14]. In

this algorithm the individual symbols are replaced by

bit sequences which have a distinct length [13].

Cryptography is a technique used to guarantee the

security aspects of data exchange such as data

confidentiality, data correctness, data integrity, and

data authentication [9]. There are various kinds of

encryption algorithms with their respective

characteristics, one of which is the Serpent algorithm.

Serpent is a block cipher algorithm that has a

block size of 128 bits and supports key sizes of 128,

192, or 256 bits [7]. This cipher is in the form of a

Subtitution-Permutation Network (SP-network)

which is a series of mathematical operations that are

related slings. SP-networks have S-boxes that convert

the input bit blocks into an output bit.

II. LITERATURE REVIEW

A. Wave File

Wave file (.wav) is a standard audio file used by

Windows [1]. Wave files allow various audio forms

to be recorded in various qualities, such as 8-bit or

16-bit samples with a rate of 11025 Hz, 22050 Hz or

44100 Hz [12].

Wave files are widely used in game making.

Usually for sound effects and music. Wave itself

tends to have a large size, but this is because the wave

file format is uncompressed so it has a faster loading

time. Digital audio data in wave files can have

varying qualities. The quality of the resulting sound is

determined by the bitrate, samplerate, and number of

channels [6].

Bitrate is the bit size of each sample, which is 8

bits, 16 bits, 24 bits or 32 bits [3]. In 8-bits wav all

the samples will only take as much as 1 byte.

Whereas for 16-bits it will take 2 bytes.

While samplerate states the number of samples

played every second. Samplerate commonly used is

8000 Hz, 1105 Hz, 22050 Hz, and 44100 Hz [3].

While the number of channels determines the sound

produced whether mono or stereo [3]. Mono has only

1 channel, while stereo 2 channels will take up to 2

times more space than mono.

B. File Compression

Data compression is done to reduce the size of

data or files. By compressing or compressing data, the

file or data size will be smaller so that it can reduce

transmission time when data is sent and not spend

much storage media space [18].

Compression is the process of encoding

information using fewer bits than the initial

information [10]. There are two types of compresses,

namely lossless and lossy [17]. n lossless

compression, the data will initially be broken down

into smaller sizes and finally the data is reassembled.

Whereas, in lossy compression, there are bits of

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 25

information which are eliminated after being done for

compression [10].

The general principle in the compression process

is to reduce duplication of data so that the memory

represents less than representing the original digital

data [17].

C. Huffman Method

The Huffman compression algorithm is named

after its inventor, David Huffman, a professor at MIT

(Massachusetts Institute of Technology. Huffman

compression is a lossless compression algorithm and

is ideal for compressing text or program files [16].

This causes why this algorithm is widely used in

compression programs.

Huffman compression is included in the variable

codeword length algorithm [14]. In this algorithm the

individual symbols are replaced by bit sequences

which have a distinct length [13]. Symbols that

appear quite a lot in the file will give a short sequence

while symbols that are rarely used will have a longer

sequence of bits. The way the Huffman method works

is by encoding the bits (a combination of bits 0 and 1)

to represent the actual data [2].

D. Criptography

Cryptography is a technique used to guarantee the

security aspects of data exchange such as data

confidentiality, data correctness, data integrity, and

data authentication [9]. To ensure the security of data

exchange, it can be done in various ways, one of

which is by encoding the password algorithm.

The encoding process is carried out so that the

data sent cannot be understood by anyone other than

those who have access to the data [Rinaldi Munir]. In

the encoding process there are two main concepts,

namely encryption and decryption.

Encryption is the process of changing data or

information that will be sent into a form that is almost

unrecognized as the initial information [5].

Encryption is usually done before the data or

information is sent.

In cryptography process, data or information that is

understandable means that it is known as plain text or

clear text while the information that has been

obscured is known as a text cipher [4]. To improve

the security of information encryption, the key is

added to the encryption process. Whereas decryption

is the process of converting ciphertext into plain text.

E. Serpent Algortihm

Serpent was designed by Ross Anderson, Eli

Biham and Lars Knudsen [11]. The Serpent algorithm

is faster than DES and is safer than Triple DES [8].

This provides users with a very high level of

assurance that no shortcut attacks will be found. To

achieve this, algorithm designers limit themselves to

well-understood cryptographic mechanisms, so they

can rely on extensive experience and proven

techniques of cipher block cryptanalysis.

The Serpent algorithm uses twice as many rounds

as needed to block all the shortcut attacks that are

currently happening. This means that the Serpent

must be safe against as unknown attacks that might be

able to break 16 standard rounds used in various types

of encryption at this time. However, the fact that

Serpent uses so many rounds.

Serpent is a cipher block algorithm that has a

block size of 128 bits and supports key sizes of 128,

192, or 256 bits [7]. This cipher is in the form of a

Subtitution-Permutation Network (SP-network)

which is a series of mathematical operations that are

related slings. SP-networks have S-boxes that convert

the input bit blocks into an output bit.

III. METHODOLOGY

In this study the wave file was obtained through

two sources, namely microphone and audio file. To

process input from the microphone, a digitalisation

mechanism is needed. Then the compression process

is done to reduce the size to be entered into the

encryption process.

The serpent algorithm is used to encrypt the voice

message flow by changing the operating mode that is

used until the characteristics resemble the flow cipher,

that is, the counter operation mode.

A. Huffman Compression on Wave File

The way the Huffman method works is to encode

the bit (a combination of bits 0 and 1) to represent the

actual data. The compression steps with the Huffman

method are as follows [16] :

1) Calculate the frequency or weight of the

appearance of each character in a file.

Wave files use a standard RIFF structure that

groups file contents into separate chunks [3]. Each

section has its own header and data byte.

Here is a wave file where the first 60 bytes of a

wave file are displayed in hexadecimal :

52 49 46 46 24 08 00 00 57 41 56 45

66 6D 74 20 10 00 00 00 01 00 02 00

22 56 00 00 88 58 01 00 04 00 10 00

64 61 74 61 00 08 00 00 00 00 cA 00

00 00 CA 0F 00 00 CA F0 00 00 CA FF

To form a Huffman frequency table, a 16 byte

data wave file is taken starting from the 45th byte

offset, which is data:

00 00 CA 00 00 00 CA 0F 00 00 CA F0

00 00 CA FF

The frequency distribution table obtained is

presented as in Table I.

Table i. Frequency distribution table

Character 00 CA 0F F0 FF

Frequency 9 4 1 1 1

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 26

After that, a tree node is formed for each

character along with their respective frequency values

like Fig. 1

CA 400 9 0F 1 F0 1 FF 1

Fig. 1. Table I Node Tree

2) Take two characters that have the smallest

frequency.

Based on the node in Fig 1, it is obtained that the

characters of FO and FF are the smallest nodes.

3) Huffman tree form from both data taken. The

sum of the two characters is set as temporary root

and both characters are set as leaves.

Both characters are FO and FF combined to form

a new tree with the root value is the sum of the values

of the weight of F0 and FF. Then, the two tree nodes

are deleted and replaced with a new tree resulting

from the merger of the two nodes. The results of this

stage are presented as Fig. 2.

CA 200 9 0F 1

F0 1 FF 1

F0 FF 2

Fig. 2. Tree Results Merging FO and FF

After that each node is sorted again from the

largest to the smallest value as in Fig. 3.

CA 400 9 0F 1

F0 1 FF 1

F0 FF 2

Fig. 3. Trees that have been sorted

he process to produce Fig. 2 and Fig. 3 is carried

out continuously for all remaining nodes, until the

Huffman tree is obtained as in Fig. 4

CA 4

0F 1

F0 1 FF 1

F0 FF 2

F0 FF 0F 3

CA FO FF OF 700 9

00 CA F0 FF 0F 16

Fig. 4. Huffman Tree

4) Change the structure of the Huffman code

into a binary tree form.

To read the code from this Huffman tree, start

from the root and add 0 each time to the left side of

the tree, and add 1 each time to the right. So that the

results are obtained as shown in Fig. 5.

CA 4

0F 1

F0 1 FF 1

F0 FF 2

F0 FF 0F 3

CA F0 FF 0F 700 9

00 CA F0 FF 0F 16

10

10

0 1

10

Fig. 5. Bit Code on the Huffman Tree

5) The bit pattern that will be used as a

reference for each character is arranged starting

from bits from roots to leaves.

Based on the Huffman tree obtained in Fig. 5, then

the data bit code reading process is presented as in

Table II.

TABLE II. BIT CODE HUFFMAN TREE

Symbol Bit Code

00 0

CA 10

0F 111

F0 1100

FF 1101

To encode using the Huffman tree, for example

the Wave data file is :

00 00 CA 00 00 00 CA 0F 00 00 CA F0 00 00 CA

FF
Then the result by looking at the bit code table will be:

0 0 10 0 0 0 10 111 0 0 10 1100 0 0 10 1101

Determination of compression ratio is done by

comparing the number of data bits before being

compressed, namely the number of characters in bytes

x 8 bits = 16 x 8 bits = 128 bits. While the number of

bits resulting from compression is 28 bits, so the

compression ratio obtained is

 = 21,875 %

B. Implementation Serpent Algorithm on Wave File

 Suppose this wave data file starts from the 45th

byte offset and is taken only 16 bytes and declared in

hexadecimal.

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 27

Plaintext : 00 00 CA 00 00 00 CA 0F 00
00 CA F0 00 00 CA FF

Key :
000102030405060708090A0B0C0D0E0F

The serpent algorithm encrypts plaintext P 128

bits into 128-bit C ciphertext in 32 turns with control

of 33 128-bit K0, ..., K32 sub-keys. The user input key

length used for this discussion is 128 bits. For the

encryption process, Serpent requires 32 128-bit

subkeys denoted by K0, ..., K32.

Steps to get all 33 subkeys, are:

1) Divide the input key K into eight parts, each

32 bits denoted by W-8 , ... , W-1
00010203 04050607 08090A0B

0C0D0E0F

2) Forms 132 intermediate keys (prekey)

denoted by W0, ..., W131 through equations:

Wi=(Wi-8Wi-5Wi-3Wi-1   i) <<< 11

 notation s a small part of the golden ratio (√5 +

1) / 2 or 0x9E3779B9 in hexadecimal.

00010203 = W-8, W-7, W-6, W-5, W-4, W-3, W-2, W-1

W0 = (W-8  W-5  W-3  W-1    0)

 W0 = (0  1  2  3  0x9E3779B9  0)

 W0 = 0x9E3779B9

……

3) Forming 132 round key k0 to k131 formed

from the intermediate key generated from the

previous process using S-boxes, S-boxes are used to

change the Wi to Ki intermediate with the following

conditions:

{K0,K1,K2,K3}=S3 (W0,W1,W2,W3)

{K4,K5,K6,K7}=S2 (W4,W5,W6,W7)

{K8,K9,K10,K11}=S1 (W8,W9,W10,W11)

{K12,K13,K14,K15}=S0 (W12,W13,W14,W15)

…

{K124,K125,K126,K127}=S4 (W124,W125,W126,W127)

{K128,K129,K130,K131}=S3 (W128,W129,W130,W131)

Here are S-boxes S0 to S7:

S0: 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12

S1: 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4

S2: 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

S3: 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14

S4: 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13

S5: 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1

S6: 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0

S7: 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

S-boxes taken S3, then:

K0 = S3 (W0)

K0 = 0 15 11 8 12 9 6 3 (0x9E3779B9)

K0 = C06704A4

The same thing is done to obtain round key K0 to

K131.

4) Forms a 128 bit Ki subkey (For I{0, … ,

32}) from 32 bit Kj vaues by using :

Ki={K4i, K4i+1, K4i+2, K4i+3}

KO = {KO, K1, K2, K3}

KO =

{C06704A4025A3A3462C7B9234E6C2FFB}

 The sub-key formation process is carried out so

that the key sub-units K1 through K32 are obtained.

Then the encryption stage on the Serpent is

performed, ie each function of the Ri loop (i = 0, ..., 31)

only uses a replicated S-Box. For example, R0 uses S0,

32 copies are applied in parallel, so the copy of S0 uses

bits 0,1,2, and 3 of PT K0 as input and return the

first four bits of the intermediate vector as output, the

next copy receives input bits 4-7 from PTK0 and

return the next four bits of the intemediate vector, and

so on.

The intermediate vector is then transformed using

linear transformations, producing CT0. In the same

way, R1 uses 32 S1 copies in parallel on CT1K1 and

transform the output using linear transformation,

producing CT2

.

PTK0= 0 0 0 0 C A 0 0 0 0 0 0 C A 0 F 0 0 0 0 C A

F 0 0 0 0 0 C A F F  C 0 6 7 0 4 A 4 0 2 5 A 3 A 3

4 6 2 C 7 B 9 2 3 4 E 6 C 2 F F B = C 0 6 7 C E A 4 0

2 5 A F A 3 B 6 2 C 7 7 3 D 3 4 E 6 C E 5 0 4

So as to produce:

Input : C 0 6 7 C E A 4 0 2 5 A F A 3 B 6 2 C 7 7 3 D

3 4 E 6 C E 5 0 4

Output : C 0 6 7 C E A 4 0 2 5 A F A 3 B 6 2 C 7 7 3

D 3 4 E 6 C E 5 0 4

The output is then transformed using a linear

transformation where for each output bit of this

transformation, a list of parity input bits is the output

bit. Bits are registered from 0 to 127. In each row four

output bits are obtained which together form input to

one S-box in the next round.

The result of the output is transformed with a

linear transformation resulting in CT0.

Here are the results of all CT0 to CT31 :

CT1=FF46D7451ED630CF95FF7FDD5D19F778

CT2=86DE6AB3C100339590FC1E7E6A9AF5AC

CT3=FEFE0E66161A763014099215E5E80F41

CT4=2D200ECED822AB937ECB9D1BD5CB2681

.

.

.

CT31=1A861B95BB2683797BA26A2EC8BCE3A4

So that the ciphertext in hexadecimal form is:

CT =8FC7C02454F6FF2E1112899966C965FA

IV. RESULT AND DISCUSSION

 Wave file compression and decompression testing

is performed on several types of Wave files. The

Wave file that is tested has a large size that varies and

testing is carried out on Wave files that are included

in the Windows operating system. The test results are

presented in Fig.6.

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 28

Fig 6. Huffman Compression Testing Results

The results of testing Serpent encryption for wave

files are presented as in Fig. 7.

Fig. 7. Wave File Encryption

From the results of the compression process

testing, it was found that the huffman compression

ratio has a range between 67.52% for the lowest value

and the highest is 91.21%. The average compression

ratio is 82.11%. This shows that the compressed file

size is 0.8211 times the original file size or 17.89%.

V. CONCLUSIONS

 Based on the discussion that has been carried out,

the conclusion is:

1. The compression level is affected by the number

of the same tone in the Wave file.

2. The process speed does not depend on the data

that is processed but depends on the file size.

3. The decompression process is faster than the

compression process because the decompression

process occurs when the Huffman tree is formed.

4. The result of the file that has been encrypted does

not change the file size.

5. Sound quality after experiencing compression and

encryption still has good quality.

ACKNOWLEDGMENT

The author would like to thank the Rector of the

Catholic University of St. Thomas, the Chair of the

Institute for Research and Community Service, the

Dean of the Faculty of Computer Science who has

provided support for this research. Thank you as

much as possible to the editorial of International

Journal of Computer Trends & Technology - IJCTT

who are willing to publish this journal. The author is

open to suggestions and criticisms for improvement

in this journal.

REFERENCES

[1] A. A. Tamimi and A. M. Abdalla, “An Audio Shuffle -

Encryption Algorithm” The World Congress on

Engineering and Computer Science 2014 WCECS 2014,

San Francisco, USA, 2014.

[2] Aarti, “Performance Analysis of Huffman Coding

Algorithm”, International Journal of Advanced Research

in Computer Science and Software Engineering, vol. 3,

Issue 5, May 2013 ISSN: 2277 128X.

[3] Ahmad Jawahir & Haviluddin, “An Audio Encryption

Using Transposition Method” International Journal of

Advances in Intelligent Informatics, Vol 1, No 2, July

2015, pp. 98-106 ISSN: 2442-6571.

[4] Adil Jamil Zaru, Momeen Khan, “General Summary of

Cryptography”, Adil Jamil Zaru. Int. Journal of

Engineering Research and Application ISSN : 2248-9622,

Vol.08, Issue 02, (Part -2) Ffebruary 2018, pp.68-71,

DOI: 10.9790/9622-080206871.

[5] Doni Ariyus, Data Security and Communication

Cryptography, Yogyakarta : Andi, 2006.

[6] Hazem Kathem Qattous, “Hiding Encrypted Data Into

Audio File”, IJCSNS International Journal of Computer

Science and Network Security, VOL.17 No.6, June 2017.

[7] Jaroslaw Sugier, “Implementing Serpent Cipher in Field

Programmable Gate Arrays” ICIT 2011 The 5th

International Conference on Information Technology.

[8] J. Lazaro, A. Astarloa, J. Arias, U. Bidarte, C. Cuadrado,

“High Throughput Serpent Encryption Implementation”,

Field Programmable Logic and Application, Lecture Notes

in Computer Science, vol. 3203, Springer, 2004.

[9] K Wahyudi, PDP Silitonga, “Cryptographic Applications

for Exchange of Messages Using Steganography and AES

Algorithms”, Proceedings of the 2008 Teknoin National

Seminar in Information Engineering, ISBN : 978-979-

3980-15-7.

[10] K. Sayood, Introduction To Data Compression, Morgan

Kaufmann Publishers Inc. 1996.

[11] Mai Hossam Taher, Ali E.Taki El Deen, Mohy E. Abo

Elsoud, “Hardware Implementation Of The Serpent Block

Cipher Using Fpga Technology”, International Journal of

Electronics and Communication Engineering &

Technology (IJECET), ISSN 0976 – 6464, ISSN 0976 –

6472(Online), Volume 5, Issue 10, October (2014), pp.

34-44.

[12] M. Kaur and S. Kaur, "Survey of Various Encryption

Techniques for Audio Data," International Journal of

Advanced Research in Computer Science and Software

Engineering, vol. 4, pp. 1314-1317, 2014.

[13] Mamta Sharma, “Compression Using Huffman Coding”,

IJCSNS International Journal of Computer Science and

Network Security, vol.10 No.5, May 2010.

[14] Nigam Sangwan, “Text Encryption with Huffman

Compression”, International Journal of Computer

Applications, vol. 54, No.6, September 2012.

[15] Rinaldi Munir, Cryptography, Informatika, Bandung,

2006.

[16] Sanjali Gupta, Nikhil Shanker Mathur and Priyank

Chauhan, “A New Approach to Encryption using Huffman

Coding” ,International Journal of Progressive Sciences

and Technologies (IJPSAT), Vol. 2 No. 2 April. 2016,

pp.76 -82.

[17] Salomon, D. A Guide to Data Compression Methods,

Springer, 2002.

[18] Shannon, C. E., A Mathematical Theory of

Communication, The Bell System Technical Journal, vol

27, Juli, October, 2002.

