
International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 12

Relationship between Operating System,

Computer Hardware, Application Software

and Other Software

John O. Ugah1, Sunday C. Agu2, Felix Elugwu 3
1
 Department of Computer Science, Ebonyi State University, Abakiliki, Nigeria

2Department of Computer Science, Madonna University, Elele, Nigeria
3 Department of Computer Science, Delta State Polytechnic, Otefe-Oghara, Nigeria

Abstract

 This paper studied the relationship between

operating system (OS), computer hardware,

application software and other software, the functions

of OS to computer hardware and application software,

the types of OS and the application programs they

manage. It also studied the OS abstraction of physical

memory to curb the security issues on processes that

may arise as a result of multiple programs residing

concurrently in memory, where a process may read or

worse, write some other process’s memory, thus

explaining the concepts of memory visualization and

principle of isolation. Moreover, it looked into how

OS manages various I/O devices, taking an

application I/O request and sending it to the physical

device, and taking the response back from the device

to the application, thus exploring the three

approaches available through which the CPU

communicate with the Devices: Special Instruction

I/O, Memory-mapped I/O and the Direct memory

access (DMA).

Keywords - Operating System, Hardware, Software,

Abstraction, Address Space, I/O Devices.

I. INTRODUCTION

Computer hardware is the physical parts or

components of a computer, such as the monitor,

keyboard, computer data storage, graphic card, sound

card and motherboard. By contrast, software is

instructions that can be stored and ran by hardware.

Hardware is directed by the software to execute any

command or instruction. A combination of hardware

and software forms a usable computing system [1].

An operating system (OS) is system software that

manages computer hardware and software resources

and provides common services for computer

programs. For hardware functions such as input and

output and memory allocation, the operating system

acts as an intermediary between programs and the

computer hardware, although the application code is

usually executed directly by the hardware and

frequently makes system calls to an act independently

of one another [2]. For a computer to effectively

manipulate data and produce useful output, its

hardware and software must work together. Without

software, computer hardware is useless.

Conversely, computer software cannot be used

without supporting hardware. Similarly, computer

software has to first be loaded into the computer’s

hardware and then executed.

One of the important jobs of an Operating System

is to manage various I/O devices including mouse,

keyboards, etc. An I/O system is required to take an

application I/O request and send it to the physical

device, then take whatever response back from the

device and send it to the application [3]. Operating

System – I/O software is often organized in the

following layers: User Level Libraries, Kernel Level

Modules and the Hardware. A key concept in the

design of I/O software is that it should be device

independent where it should be possible to write

programs that can access any I/O device without

having to specify the device in advance.

Application software is a type of computer

program that performs a specific personal,

educational, business and other functions in different

areas of human endeavor. Each program with the help

of OS and hardware support is designed to assist the

user with a particular process, which may be related to

productivity, creativity, and/or communication [4].

Computer software is basically programs and

procedures intended to perform specific tasks on a

system from the lowest level assembly language to the

high level languages [5]. Computer software systems

are classified into three major types namely system

software, programming software and application

software operating on a particular hardware platform.

A computer system consists of two major

elements: hardware and software [6]. Computer

hardware is the collection of all the parts you can

physically touch. Computer software, on the other

hand, is not something you can touch. Software is a

set of instructions for a computer to perform specific

operations. An OS is a software program that enables

the computer hardware to communicate and operate

with the computer software [7].

Over the years, OS has implemented different

techniques such as multiprogramming, timesharing to

enhance memory and make processes available to

computers users at a given time. In timesharing, OS

allows multiple programs to reside concurrently in

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 13

memory which makes protection an important issue;

where a process may read or worse, write some other

process’s memory [8].

This paper studied how OS abstracts physical

memory known as the address space which is the

running program’s view of the memory. It also studied

the OS I/O hardware and software and explores the

basics and functions of OS, hardware and software.

II. OPERATING SYSTEM, COMPUTER

HARDWARE AND APPLICATION SOFTWARE

 An operating system (OS), in its most general

sense, is software that allows a user to run other

applications on a computing device. While it is

possible for a software application to interface directly

with hardware, the vast majority of applications are

written for an OS, which allows them to take

advantage of common libraries and not worry about

specific hardware details. The operating system

manages a computer's hardware resources, including:

(a) Input devices such as a keyboard and mouse. (b)

Output devices such as display monitors, printers and

scanners. (c) Network devices such as modems,

routers and network connections. (d) Storage devices

such as internal and external drives.

The OS also provides services to facilitate the

efficient execution and management of, and memory

allocations for, any additional installed software

application programs. It consists of many components

and features. Which features are defined as parts of

the OS vary with each OS. However, the three most

easily defined components are: (a) Kernel: This

provides basic-level control over all of the computer

hardware devices. Main roles include reading data

from memory and writing data to memory, processing

execution orders, determining how data is received

and sent by devices such as the monitor, keyboard and

mouse, and determining how to interpret data received

from networks. (b) User Interface: This component

allows interaction with the user, which may occur

through graphical icons and a desktop or through a

command line (c) Application Programming

Interfaces: This component allows application

developers to write modular code [3].

Hardware refers to the physical elements of a

computer. This is also sometime called the machinery

or the equipment of the computer. Examples of

hardware in a computer are the keyboard, the monitor,

the mouse and the central processing unit. However,

most of a computer's hardware cannot be seen; in

other words, it is not an external element of the

computer, but rather an internal one, surrounded by

the computer's casing (tower). A computer's hardware

is comprised of many different parts, but perhaps the

most important of these is the motherboard. The

motherboard is made up of even more parts that power

and control the computer [9].

An application program (app or application for short)

is a computer program designed to perform a group of

coordinated functions, tasks, or activities for the

benefit of the user. Examples of an application include

a word processor, a spreadsheet, an accounting

application, a web browser, a media player, an

aeronautical flight simulator, a console game or a

photo editor. The collective noun application software

refers to all applications collectively. This contrasts

with system software, which is mainly involved with

running the computer. Applications may be bundled

with the computer and its system software or

published separately, and may be coded as

proprietary, open-source or university projects. Apps

built for mobile platforms are called mobile apps [10].

A. Functions of Operating System to Computer

Hardware and Application Software

According to [2], an operating system performs the

following functions to either the computer hardware

or application software:

 Booting: Booting is a process of starting the

computer. The operating system starts the computer

to work. It checks the computer and makes it ready

to work.

 Memory Management: The memory cannot be

managed without operating system. Different

programs and data execute in memory at one time.

If there is no operating system, security can be

compromised and the system will not work

efficiently.

 Loading and Execution: An application program is

loaded in the memory before it can be executed.

Operating system provides the facility to load

programs in memory easily and then execute it.

 Data security: Data is an important part of computer

system. The operating system protects the data

stored on the computer from illegal use,

modification or deletion.

 Disk Management: Operating system manages the

disk space. It manages the stored files and folders in

a proper way.

 Process Management: CPU can perform one task at

one time. If there are many tasks, operating system

decides which task should get the CPU.

 Device Controlling: operating system also controls

all devices attached to computer. The hardware

devices are controlled with the help of small

software called device drivers.

 Printing controlling: Operating system also controls

printing function. If a user issues two print

commands at a time, it does not mix data of these

files and prints them separately.

 Providing interface: It is used in order that user

interface acts with a computer mutually. User

interface controls how you input data and

instruction and how information is displayed on

screen. The operating system offers two types of the

interface to the user:

i. Graphical-line interface: It interacts with of

visual environment to communicate with the

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 14

computer. It uses windows, icons, menus and

other graphical objects to issues commands.

Command-line interface: it provides an interface to

communicate with the computer by typing commands.

B. Types of Operating Systems and the Application

Programs they manage

 Single and Multi-tasking OS: A single-tasking

operating system can only run one program at a

time, while a multi-tasking operating system

provides the ability to run more than one task at

once. Multi-tasking may be characterized in

preemptive and co-operative types. In preemptive

multitasking, the operating system slices the CPU

time and dedicates a slot to each of the programs.

Unix-like operating systems, such as Solaris and

Linux—as well as non-Unix-like, such as Amigos—

support preemptive multitasking. Cooperative

multitasking is achieved by relying on each process

to provide time to the other processes in a defined

manner. 16-bit versions of Microsoft Windows used

cooperative multi-tasking. 32-bit versions of both

Windows NT and Win9x used preemptive multi-

tasking [11].

 Single- and multi-user OS: Single-user operating

systems have no facilities to distinguish users, but

may allow multiple programs to run in tandem. A

multi user operating system let more than one user

access the computer system at a time. Access to the

computer system is normally provided via a

network, so that users access the computer remotely

using a terminal or other computer. Time-sharing

operating systems schedule tasks for efficient use of

the system and may also include accounting

software for cost allocation of processor time, mass

storage, printing, and other resources to multiple

users [12].

 Distributed OS: This s a situation whereby the OS is

decentralized. In this case each process in a unit

undergoes a complete execution. It does not wait for

a process to be executed at a particular unit and

hence, it is termed Distributed Processing. In an OS,

distributed and cloud computing context, tinplating

refers to creating a single virtual machine image as

a guest operating system, then saving it as a tool for

multiple running virtual machines. The technique is

used both in virtualization and cloud computing

management, and is common in large server

warehouses.

 Embedded OS: are designed to be used in embedded

computer systems. They are designed to operate on

small machines like PDAs with less autonomy.

They are able to operate with a limited number of

resources. They are very compact and extremely

efficient by design. Windows CE and Minix 3 are

some examples of embedded operating systems.

 Real time OS: are systems that respond to input

immediately. This category includes operating

systems designed substantially for the purposes of

controlling and monitoring external activities with

timing constraints. They are used for such tasks as

navigation, in which the computers must react to a

steady flow of new information without

interruption. A real-time operating system may be

single- or multi-tasking, but when multitasking, it

uses specialized scheduling algorithms so that a

deterministic nature of behavior is achieved.

A library operating system is one in which the

services that a typical operating system provides, such

as networking, are provided in the form of libraries

and composed with the application and configuration

code to construct a unikernel: a specialized, single

address space, machine image that can be deployed to

cloud or embedded environments

III. OPERATING SYSTEM ABSTRACTION

According to [8], to curb the security issues that

may arise as a result of multiple programs residing

concurrently in memory Fig. 1 where a process may

read or worse, write some other process’s memory,

OS create an easy to use abstraction of physical

memory Fig. 2. This abstraction is called the address

space, and it is the running program’s view of

memory in the system. Hence, the address space of a

process contains all of the memory state of the

running program.

For instance figure 3.2 shows that the program code

lives in memory and as it runs, it uses a stack to keep

track of where it is in the function call chain as well as

to allocate local variables and pass parameters and

return values to and from routines. Lastly, the heap is

used for dynamically-allocated, user-managed

memory, such as that you might receive from a call to

malloc() in C or new in an object oriented language.

Address space also contains other components apart

from code, stack and heap such as statically-initialized

variables).

In Figure 3.2, the address space is only 32KB.

The program code lives at the top of the address space

Fig 1: Three Processes sharing memory [1].

Operating System

(code, data, etc.)

(free)

Process X

(code, data, etc.)

Process Y

(code, data, etc.)

(free)

Process Z

(code, data, etc.)

(free)

(free)

0KB

128KB

384KB

512KB

640KB

768KB

896KB

1024KB

1152KB

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 15

(starting at 0, and is packed into the first 2K of the

address space). Code is static. It is placed at the top

and it does not require extra space as the program

runs. The heap and the stack are placed at opposite

ends of the address space because each can grow. The

heap begins after the code at 2KB and grows

downward such as when more memory is requested by

a user through malloc(). The stack begins at 32KB and

grows upward such as when a procedure call is made

by a user. The placement of stack and heap could be

arranged in a different style as when multiple threads

co-exist in an address space but the placement used in

figure 3.2 is a convention.

In address space which is the abstraction that the

OS is providing to the running program, the program

really is not in memory at physical addresses 0

through 32KB. Rather it is loaded at some randomly

selected physical addresses. Examine processes A, B,

and C in Figure 3.1; each process is loaded into

memory at a different address which poses the

security problem:

A. Memory Virtualization

The act of OS abstraction of physical memory is

referred to memory virtualization because the running

program thinks it is loaded into memory at a particular

address (such as 0) and has a potentially very large

address space (such as 32-bits or 64-bits). The reality

is quite different [8]

When, for example, process A in Figure 3.2 tries

to perform a load at address 0 (which we will call a

virtual address), somehow the OS, in tandem with

some hardware support, will have to make sure the

load doesn’t actually go to physical address 0 but

rather to physical address 320KB (where A is loaded

into memory). This is the key to virtualization of

memory, which underlies every modern computer

system in the world

B. The Principle of Isolation

Isolating two objects means that the shutting

down of one of the objects would not affect the other.

OS ensures that processes are isolated from each other

thus avoiding one from damaging the other [8].

Additionally, this technique ensures that the running

programs cannot affect the operation of the underlying

OS. Recent OS barricade pieces of the OS from other

pieces of the OS. Such micro kernels thus may

provide greater reliability than typical monolithic

kernel designs

IV. OPERATING SYSTEM – I/O HARDWARE

One of the important jobs of an Operating System is to

manage various I/O devices including mouse,

keyboards, touch pad, disk drives, display adapters,

USB devices, Bit-mapped screen, LED, Analog-to-

digital converter, On/off switch, network connections,

audio I/O, printers etc [3]. An I/O system is required

to take an application I/O request and send it to the

physical device, then take whatever response comes

back from the device and send it to the application.

A. Device Controllers

 Device drivers are software component that are

used in OS which enable a particular device to work.

Device drivers assist OS to take charge of all I/O

devices. A Device Controller serves as a contact point

between a device and a device driver. As a contact

point, its primary function is to convert serial bit

stream to block of bytes and perform error correction

as necessary. A device controller and a corresponding

driver must be available for each device to

communicate with the Operating Systems.

B. Communication to I/O Devices

 There are three methods through which the CPU

communicate with the Device: Special Instruction I/O,

Memory-mapped I/O and the Direct Memory Access

(DMA) [3].

Special Instruction I/O: make use of specific CPU

instructions that allow data to sent to or read from an

I/O device

Memory-mapped I/O: in this approach, the

memory and I/O devices share the same address space

hence, application data can be transferred to or from

I/O devices and memory without passing through

CPU. This method is beneficial because an I/O device

can be operated by every instruction that can access

the memory. Majority of high-speed I/O devices like

disks and communication interfaces use memory

mapped IO.

Direct Memory Access (DMA): DMA unit

controls exchange of data between main memory and

the I/O device. CPU is only involved at the beginning

and end of the transfer and interrupted only after

entire block has been transferred. OS uses DMA to

reduce the time it uses in handling the interrupts to the

main CPU generated by either slow devices such as

0KB

2KB

4KB

30KB

32KB

Figure 3.2: An Address space [1].

The stack segment:

contains local variables,

arguments to routines,

return values, etc.

(it grows upward)

The heap segment:

contains malloc’d data

dynamic data structures

(it grows downward)

The code segment:

where instructions live

Program Code

Heap

(free)

Stack

International Journal of Computer Trends and Technology (IJCTT) – Volume 64 Number 1 – October 2018

ISSN: 2231 – 2803 http://www.ijcttjournal.org Page 16

keyboard or fast devices such as disk after each byte is

transferred by these devices. DMA requires DMA

controller (DMAC) that manages the data transfers

and enables access to the system bus. The controllers

are programmed with source and destination pointers

(where to read/write the data), counters to track the

number of transferred bytes, and settings, which

includes I/O and memory types, interrupts and states

for the CPU cycles figure 4.1

V. CONCLUSION

Hardware and software are mutually dependent

on each other. Both of them must work together to

make a computer produce a useful output. A driver

software component provides a software interface to

hardware devices, enabling operating systems and

other computer programs to access hardware functions

without needing to know precise details about the

hardware being used. Software cannot be utilized

without supporting hardware and vice versa

OS creates address space, an abstraction of the

physical memory which is the running view of the

memory, to curb the security issues that may arise as a

result of multiple programs residing concurrently in

memory. This act is referred to as virtualization

because the running program thinks it is loaded in

memory at a particular address. Moreover, OS uses

isolation principles the separate processes to ensure

that the operation of one process does not affect the

other and the operations of the underlying OS.

DMA offers better advantage over the other

methods through which the CPU communicate with

the devices as the OS used DMA to reduce the time it

uses in handling the interrupts to the CPU. In addition,

DMA controllers are programmed with (1) source and

destination pointers which indicate where to read /

write data and (2) counters which track the number of

transferred bytes.

REFERENCES

[1] Keizer, G. Microsoft gets real, admits its device share is just

14%, Computerworld. IDG, [Microsoft's chief operating

officer], 2014.

[2] Sophia T. (2018) The Relationship Between Hardware and

Software. [Online]. Available:

https://www.sophia.org/tutorials/the-relationship-between-

hardware-and-software.

[3] Tutorial Point. (2018) Operating System – I/O. [Online].

Available:

https://www.tutorialspoint.com/operating_system/os_io_hard

ware.htm

[4] Custer, H. Generations of Computer, Microsoft Press, USA.

Pp 78, 1993.

[5] David, C. Introduction to General Purpose Computing (Part

One), CNET Prints, New York. Pp 31, 2001.

[6] Campbell, K. and Aspray, W. Computer: A History of the

Information Machine, New York: Basic Books. Pp 34-36,

2006.

[7] Anand, L. (2010) The Xbox One - Mini Review &

Comparison to Xbox 360/PS4. [Online]. Available:

anandtech.com.

[8] Arpaci-Dusseau. (2014) The Abstraction: Address Spaces.

[Online]. Available:

http://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf..

[9] Ceruzzi, Paul E. History of Modern Computing, Cambridge,

Mass.: MIT Press. Pp 67, 2000.

[10] Mike, N. Fundamental of Computer, Windows Team Blog.

Microsoft. 2008.

[11] Ulrich, W. (2013) Application Package Software: The

Promise Vs. Reality, Cutter Consortium. [Online]. Available:

https://www.cutter.com/article/application-package-

software-promise-vs-reality-39387.

[12] Gassée, Jean-Louis (2012) The Silly Web vs. Native Apps

Debate. [Online]. Available: https://web.archive.org/web/

20160415200141/http:/www.thisurlisfalse.com/the-silly-

web-vs-native-apps-debate/.

CPU

Main

Memory

DMA

Data Bus

Device

Controller

USB Drive

Device

Controller

Disk

Device

Controller

Printer

Figure 4.1: Direct Memory Access [3]

