
International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 41

An Intuitionistic Fuzzy K-Medoids Based

Similar Pattern Analysis in Software Defect

Prediction
M. Jaikumar

1
, V. Kathiresan

2

1Assistant Professor & Head, Department of Computer Applications(UG)
2Associate Professor & Head, Department of Computer Applications(PG)

1Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamilnadu, India
2Dr.SNS Rajalakshmi College of Arts & Science, Coimbatore, Tamilnadu, India

Abstract

 In the software field the quality and the

reliability are the important factors which have to be

greatly handled with the help of software defect

prediction. During the period of development and the

maintenance of the software detecting and rectifying

the software defects is really more expensive. By

designing prediction model which accurately

determines the occurrence of defect in software

greatly assist in efficient software testing, reducing

the cost and considerably improvising testing process
of software by focusing on fault prone modules.

Machine Learning Clustering has emerged as a way

to predict the fault in the software system by

grouping the similar patterns. This paper focuses on

predicting the software defect contributed by NASA

repository dataset. This work uses Intuitionistic fuzzy

K-medoids based clustering for finding the similar

pattern among the software defect dataset and design

the rule based on it.

Keywords

Software, defect, intuitionistic fuzzy, K-medoids,

clustering, fault

I. Introduction

With the help of software metrics and the

software fault dataset which was collected from the

earlier developed software or projects based on the

prediction model is trained and developed for

software defect detection. This well trained model

can then be applied to unknown defect data of any

software module. The performance of the defect

prediction is greatly influenced by the attributes of
the software metrics which increases the efficiency of

the software considerably. As sovereign testing team,

it is significant to map and administer the test

implementation behavior in order to convene the tight

limit for releasing the software to end-users. Since

the aspire of test carrying out is to determine as many

fault as possible, testing team is typically put into

encumber to guarantee all defects are establish and

set by the developers inside the system testing stage.

 Extra number of days has to be added to the

timeline to contain testing team in effecting their test

with the trust that all defects have been originate and

set. On the other hand, the stakeholders would also

ask the difficult team on the forecasted defects in the

software so that they could choose whether the

software is reasonable and robust for release. This is

owing to the environment that system testing is the

last gate before the software is made visible to end-

users, thus as the custodian of executing system

testing, the autonomous testing team has to take
liability to ensure software to be unrestricted is of

high excellence.

Therefore, the ability to predict how many

defects that can be found at the start of system testing

shall be a good way to tackle this issue. This becomes

the reason for conducting this study. Besides serving

as a target on how many defects to capture in system

testing, defect prediction can also become an early

quality indicator for any software entering the testing
phase. Testing team can use the predicted defects to

plan, manage and control test execution activities.

This could be in the form aligning the test execution

time and number of test engineers assigned to

particular testing project. Having defect prediction as

part of the testing process allows testing team to

strengthen their test Strategies by adding more

exploratory testing and user experience testing to

ensure known defects are not escaped and re-

introduced to end-users.

II. Related Work

 Software defect prediction is not a new thing

in software engineering domain. To come out with

the right defect prediction model various related

studies and approaches have been conducted.

Understanding what defect really means is important

so that the term defect is not confused with error,
mistake or failure. In the event the defect have taken

place, when the software or system fails to perform

its desired function [1]. Defect is also observed as the

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 42

deviation from its specification [2] as well as any

imperfection related to software itself and its related

work product [3]. Consequently, defect can be

referred as its work product and something that is not

according to requirement for software. Since, the

defects means it is the structure the prediction model
for defects, it is used to know how defects are

introduced as part of verification and validation

(V&V) activities [3].

 Defects predicting can be characterized in

the proactive process of many types of defects that

can be found in software’s content, design and codes

in producing high quality product [4]. To predict

defect density Rayleigh model was also used for

different phases of project life cycle [5]. In [6]

product and project metrics collected from design

review, code testing, code peer review as well as

product release usage and defect validation can be
constructed using the model to predict defects. Linear

regression was applied to these metrics via product

metrics only, project metrics only and both. As the

result, both product and project metrics provided

better correlation between defects and the predictors

using linear regression. It demonstrated the feasibility

of using regression analysis to build defect prediction

model at the same time. To predict defects an

approach was carried out using mathematical

distributions that serve as quality prediction model

[7].
 In order to identify and predict the highest

defects in the large software systems will prone to

more defect is investigated was performed in it. The

important factor for the prediction and its impact to

the model quality is development information will be

the result of the investigation, which focuses on three

metrics: number of developers who modified the file

during the prior release; the number of new

developers who modified the file during the prior

release; and the cumulative number of distinct

developers who modified the file during all releases

through the prior release [8].
 We also study to investigate on how to

defect fault-proneness in the source code of the open

source Web and e-mail suite called Mozilla. To

conduct the investigation it used object-oriented

metrics proposed by Chidamber and Kemerer [9]. On

the other hand, [10] to build defect prediction model

was proposed several inputs to simulate the system

test phase, in which those inputs could be considered

as potential predictors. The defect prediction was

based on simple Bayesian Network in a form of

Defect Type Model (DTM) that predicts defects
based on severity minor, major and minor was the

another approach to defects prediction [11]. To come

out with defect inflow prediction for large software

projects either short-term defect inflow prediction or

long-term defect inflow prediction [12] is used by

Multivariate linear regression. [13] To predict defect

density statistical approach in Six Sigma

methodology is applied. In this case, Statistical

method was used against the function point as the

base metrics to predict defect density before releasing
software to production. Defect prediction can also be

observed from different perspective which is by

predicting remaining total number of defects while

the testing activities are still on-going [14], which is

called as defect decay model. This model depends on

on-going test execution data instead of historical

data. [15] Case studies can be presented on building

and assisting their organization to assess testing

effectiveness and predict the quantity of post release

defects and enables quantitative decision about

production go-live readiness the defect prediction

model was used.
 Their model was mostly focused on

predicting defects in receiving test or manufacture

which involves estimate total possible defects based

on defined thorough requirements, applying defect

elimination efficiency and finally estimates the

defects per phase as well as post discharge defects. It

display a 1% defect removal efficiency improvement

which equals to $20,000 for implementing this

model, The defect prediction would be difficult

However, if past data is not available. Sample-based

defect prediction was proposed to overcome this
difficulty by using a small sample of modules to

construct cost-effective defect forecast models for

large scale systems, in which Co Forest, a semi

supervised learning method was applied [16]. For

defect prediction testing resources portion could be

optimized, [17] on predicting defects of cross-project

when chronological data is not in place possibility

study must be conducted.

 The training data is very significant for

machine learning based defect prediction provided

that the data is carefully selected from the projects

was demonstrated as results. Building of defect
prediction system, it is necessary to couple with the

technique to find its success. In [18] the authors

proposed to compute the percent of faults establish in

the recognized files as one of the ways to review the

efficiency of the prediction Systems. In addition that,

the model is said to be a good if it can help in the

resource planning in order to maintain the software

and insure based on the software system itself is

insured [19]. However, it is firm to discover an

recognized standard specific for defect prediction. An

attempt was taken by given that an all-embracing
contrast of well-known bug prediction approaches,

jointly with narrative approaches using openly

available dataset consisting of numerous software

systems [20]. The findings showed that there is still a

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 43

difficulty with observe to exterior soundness in defect

prediction. It necessitate larger mutual data set

towards having a noteworthy target of defect

prediction

K-Medoids Clustering

The k-medoids algorithm is
a clustering algorithm related to the k-

means algorithm and the medoids shift algorithm.

Both the k-means and k-medoids algorithms are

partitioned (breaking the dataset up into groups) and

both attempt to minimize the distance between points

labeled to be in a cluster and a point designated as the

center of that cluster. In contrast to the k-means

algorithm, k-medoids chooses data points as centers

(medoids or exemplars) and works with a

generalization of the Manhattan Norm to define

distance between data points instead of this method

was proposed for the work with norm and other
distances.

 K-medoids is a classical partitioning

technique of clustering that clusters the data set

of n objects into k clusters known a priori. A useful

tool for determining k is the silhouette. It is more

robust to noise and outliers as compared to k-

means because it minimizes a sum of pairwise

dissimilarities instead of a sum of squared Euclidean

distances. A medoids can be defined as the object of

a cluster whose average dissimilarity to all the

objects in the cluster is minimal. i.e. it is a most
centrally located point in the cluster.

Input:

 k: The number of clusters

 D: A data set containing n objects

 Output: A set of k clusters that minimizes the sum of

the dissimilarities of all the objects to their nearest

medoid.

Method:

Arbitrarily choose k objects in D as the initial

representative objects;

Repeat

 Assign each remaining object to the cluster with the

nearest medoid;

Randomly select a non medoid object Orandom;

Compute the total points S of swapping object Oj

with Orandom; if S < 0 then swap Oj with Orandom

to form the new set of k medoid; Until no change;

 It works as follows:

1. Initialize: select k of the n data points as the
medoids

2. Associate each data point to the closest

medoid.

3. While the cost of the configuration

decreases:

1. For each medoid m, for each non-

medoid data point o:

1. Swap m and o,
recomputed the cost

(sum of distances of

points to their medoid)

2. If the total cost of the

configuration increased

in the previous step,

undo the swap

Proposed K-medoids algorithm

4. Suppose that n objects having p variables each

should be grouped into k (k < n) clusters, where

k is assumed to be given. Let us define jth
variable of object i as Xij (i = 1,. . .,n; j = 1,. .

.,p). The Euclidean distance will be used as a

dissimilarity measure in this study although other

measures can be adopted. The Euclidean distance

between object i and object j is given by

dij = 



P

a

jaia XX
1

2)((1)

 I = 1,…, n ; j = 1,…n (2)

It should be noted that the above Euclidean

distance will be adopted in K-means and PAM

algorithms in this study. The proposed algorithm

is composed of the following three steps.

Step 1: (Select initial medoids)

1-1. Calculate the distance between every pair

of all objects based on the chosen

dissimilarity measure (Euclidean distance
in our case).

1-2. Calculate vj for object j as follows:

 V j = 


n

i
n

l

il

ij

d

d

1

1

 , j = 1 ,…, n

(3)

1-3. Sort vj’s in ascending order. Select k

objects having the first k smallest values as

initial medoids.

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 44

1-4. Obtain the initial cluster result by assigning

each object to the nearest medoid. 1-5.

Calculate the sum of distances from all

objects to their medoids.

Step 2: (Update medoids)

Find a new medoid of each cluster, which is the
object minimizing the total distance to other

objects in its cluster. Update the current medoid

in each cluster by replacing with the new

medoid.

 Step 3: (Assign objects to medoids)

 3-1. Assign each object to the nearest medoid

and obtain the cluster result.

3-2. Calculate the sum of distance from all

objects to their medoids. If the sum is equal to

the previous one, then stop the algorithm.

Otherwise, go back to the Step 2.

The above algorithm is a local heuristic that runs
just like K-means clustering when updating the

medoids. In Step 1, we proposed a method of

choosing the initial medoids.

5. This method tends to select k most middle

objects as Initial medoids. The performance of

the algorithm may vary according to the method

of selecting the initial medoids

Fuzzy C-medoids Clustering

Fuzzy C – Medoids Algorithm Kaufman et al. in

1987 developed a k-medoids-based clustering called

PAM. A medoid is defined as the object of a cluster,

whose average dissimilarity to all the objects in the

cluster is minimal i.e. it is a most centrally located

point in the given data set. The k-medoids [3]

approach also produces a data set partition with k

clusters in order to minimize the total intra-cluster

dissimilarity, just like k-means algorithm. But the
main difference between k-means and K-Medoids

lies in the selection of center of cluster that represents

the cluster. In k-medoids, the center is a real object

from the dataset while in k-means the center may be

a non-real object calculated as mean of all the data

elements. K – Medoids algorithm avoids calculating

means of clusters in which extremely large values

may affect the membership computations

substantially. K-medoids can handle outliers well by

selecting the most centrally located object in a cluster

as a reference point, namely, medoid.

 The basic idea of k-medoids is that it first arbitrarily

finds k objects amongst n objects in the dataset as the

initial medoids. Then the remaining objects are

partitioned into k clusters by computing the minimum

Euclidian distances that can be maintained for the

members in each of the clusters. An iterative process

then starts to consider objects Pi, i = 1,….,n if a

medoid oj , j = 1,…,k, can be replaced by a candidate

object oc, c = 1,…,n, c not equal to i.

There are four situations to be considered in this

process:

1. Shift-out membership: an object Pi may need to be

shifted from currently considered cluster oj to another

cluster

2. Update the current medoid: a new medoid oc is

found to replace the current medoid oj .

3. No change: objects in the current cluster result

have the same or even smaller SEC (square error

criterion) for all possible redistributions considered

4. Shift in membership: an outside object pi is

assigned to the current cluster with the new

(replaced) medoid oc.

The Fuzzy c-Medoids Algorithm

The fuzzy c-Medoids Algorithm (FCMdd)

Fix the number of clusters c; Set iter = 0;

Randomly pick the initial set of metdoids:

V = {v1, v1,…, vc } from Xc ;

Repeat

for i=1 to c do /*compute membership:*/

for j=1 to n do

 Compute uij by using (2),(3),(4) or (5).

 endfor

 endfor

store the current medoids: Vold =V;

Compute the new medoids:

for i=1 to c do

 q = argmin jk

n

j

m

ij XXru ,(
1 

)

 1 ≤ k ≤ n

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 45

 vi = xij ;

endfor

iter = iter +1;

Until (Vodd
 ̶ V or iter ̶ MAX_ITER).

The Fuzzy Medoids Algorithm minimizes its

objective function as

J m (V ; X) = (
1 1

ru
n

i

c

i

m

ij
 

xj , vi),

 (4)

Where the minimization is performed over all V in

Xc. In (1), uij represents the fuzzy [18] or possibilistic
[19] [20] membership of xj in clusters i. The

membership uij can be defined heuristically in many

different ways. For example, we can use the FCM

[18] membership model given by:

uij =

)1(
1

1

)1(
1

),(

1

),(

1
































 m

c

k
kj

ij

m

vxr

vxr
 (5)

where m2[1;)is the “fuzzifier”.

Intuitionist Fuzzy Logic System

Preliminaries
In this section, some basic definitions, which are

prerequisites for the study, are outlined.

Definition 1 [4] Let the universal set X be fixed. An

intuitionist fuzzy set Ain X is defined as an object of

the form A = {_x,μA(x), νA(x)_ : x ∈ X} where the

functions μA : X → [0, 1] and νA : X → [0, 1] define

the degrees of membership and non-membership of

the element x ∈ X respectively, and for every x ∈ X

in A, 0 ≤ μA(x) + νA(x) ≤ 1 holds.

Definition 2. [4] For every common intuitionistic

fuzzy subset A on X, we have πA(x) = 1 − μA(x) −

νA(x) called the intuitionistic fuzzy index or

hesitancy index of x in A. πA(x) is the degree of

indeterminacy of x ∈ X to the IFS A. πA(x) expresses

the degree of lack of knowledge of every x ∈ X

belongs to IFS or not. Obviously, for every x ∈ X and

0 ≤ πA(x) ≤ 1.

Definition 3. [9] Membership function for an

intuitionistic fuzzy set A on the universe of discourse

X is defined as μA : X → [0, 1], where each element

X is mapped to a value between 0 and 1. The value

μA(x), x ∈ X is called the membership value or
degree of membership.

Definition 4. [9] Non-membership function for an

intuitionistic fuzzy set A on the universe of discourse

X is defined as νA : X → [0, 1], where each element

X is mapped to a value between 0 and 1. The value

νA(x), x ∈ Xis called the non-membership value or

degree of non-membership.

Proposed Method
 This proposed performs the predictions of

software defect using the dataset collected NASA

repository. The Dataset is normalized to fall under

the range of 0 to 1. The min-max normalization is

followed. The dataset is voluminous to handle so to

overcome that the feature subset selection strategy is

applied for finding the optimal features. The features

selected using the dempster shafer theory for

handling uncertainty in selection of feature selection.

From the reduced feature set the similarity among the

dataset instances are determined using the

intuitionistic fuzzy K-Medoids based clustering and
the resultant cluster set are used to generated the

useful pattern of rule using fuzzy logic to classify

whether the given instance is defect or defect free.

Fig 1: Overall framework of proposed Intuitionistic Fuzzy k-

medoids for software defect predicition.

Intuitionistic Fuzzy C-Means Clustering

IFCM algorithm assigns pixels to each category by

using membership, non-membership and hesitancy

values. Let X= (x1, x2, … xMxN) be an image with M x

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 46

N pixels to be partitioned into c clusters where xi

represents multispectral (features) data. The IFCM

clustering algorithm is an iterative function and

aimed at minimizing the inter cluster similarity and

IFE. The objective function of IFCM clustering is

defined as follows.

J = 
  




C

i

n

k

C

i

iik

m

ik
ievxdu

1 1 1

1*2*
*

),(


 with m = 2

 (6)

where c is the number of clusters, n is the number of

data points, u*
ik is the intuitionistic fuzzy membership

matrix, iv is the cluster center; is),(ik vxd the

distance measure between data points and cluster

center; and is i
*
e

1-
*

i
the fuzzy entropy.

uik
* = ik

c

j

m

jk

ik

d

d











 



1

1
1

2

2

[

[

1

 (7)

vi
* =









n

k ik

n

k ikik

u

xu

1

*

1

*

 (8)

Normalized Euclidian distance measure is used to

calculate the distance between the data points (A) and

cluster center (B) and defined as

qIFS(A,B) =

22

1

))()(())()((
1

iBAiBi

n

i

A xvxivxx
n






 (9)

During implementation, matrix v* is randomly

initialized, and then u* and v* are updated through an

iterative process using Equations for membership ,

non-membership and distance calculation.

Design of Fuzzy Rules and FIS

Fuzzy rules are modeled by making use if

the expert knowledge in software engineering. In our

model the needed fuzzy rules for the prediction of

defects of software projects are obtained by us. The

obtained fuzzy rules are generated by considering all

the selected software metrics one at a time for the

prediction of software defects. Consequently,

software metrics involved from phase to phase are

considered in our model that lessens the required

number of fuzzy rules.

Fuzzy inference system evaluates and

combines the result of each fuzzy rule. Fuzzy

inference engine maps fuzzy set into a fuzzy set. A

fuzzy max–min operator is used for this step. In

many applications, crisp value needs to be obtained

as an output. The centroid defuzzification method is

used in this research work in order to calculate the

value of z⁄ in the proposed model. This method is the

most common and physically appealing of all the

defuzzification methods as found in [13].

Defect density indicator value is obtained using fuzzy

inference tool of MATLAB at the end of requirement

analysis phase, design phase coding phase and testing

phase. There exist an approximately linear

relationship between software size and number of

defects [15,16].

1. If (Loc is L) and (iv(G) is L) and (I is L) and

(IOComment is L) and (IOBlank is L) and

(Unique_OP is L) and (Unique_OPND) then

(SOFTWARE_DEFECT is NON-DEFECT) (1)

2. If (Loc is M) and (iv(G) is L) and (I is L) and

(IOComment is L) and (IOBlank is L) (Unique_OP is

L) and (Unique_OPND) then
(SOFTWARE_DEFECT is DEFECT) (1)

3. If (Loc is H) and (iv(G) is L) and (I is L) and

(IOComment is L) and (IOBlank is L) (Unique_OP is

L) and (Unique_OPND)then

(SOFTWARE_DEFECT is DEFECT) (1)

4. If (Loc is L) and (iv(G) is M) and (I is M) and

(IOComment is M) and (IOBlank is M) (Unique_OP

is L) and (Unique_OPND)then

(SOFTWARE_DEFECT is DEFECT) (1)

5. If (Loc is M) and (iv(G) is M) and (I is M) and

(IOComment is M) and (IOBlank is M) (Unique_OP

is L) and (Unique_OPND) then
(SOFTWARE_DEFECT is DEFECT) (1)

6. If (Loc is H) and (iv(G) is H) and (I is H) and

(IOComment is H) and (IOBlank is H) (Unique_OP

is L) and (Unique_OPND) then

(SOFTWARE_DEFECT is DEFECT) (1)

7. If (Loc is M) and (iv(G) is H) and (I is H) and

(IOComment is H) and (IOBlank is H) (Unique_OP

is L) and (Unique_OPND) then

(SOFTWARE_DEFECT is DEFECT) (1)

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 47

8. If (Loc is M) and (iv(G) is M) and (I is H) and

(IOComment is M) and (IOBlank is H) (Unique_OP

is L) and (Unique_OPND) then

(SOFTWARE_DEFECT is DEFECT) (1)

9. If (Loc is L) and (iv(G) is H) and (I is H) and

(IOComment is H) and (IOBlank is M) (Unique_OP

is L) and (Unique_OPND) then

(SOFTWARE_DEFECT is DEFECT) (1)

10. If (Loc is M) and (iv(G) is M) and (I is L) and

(IOComment is M) and (IOBlank is L) (Unique_OP
is L) and (Unique_OPND) then

(SOFTWARE_DEFECT is DEFECT) (1)

Experimental Result

This proposed method is implemented using matlab.
The dataset is collected form the NASA repository.

This work used four different NASA dataset namely

CM1, JM1, KC1, PC1. The similarity among the

reduced features is find using the intuitionistic fuzzy

K-Medoids and from the generated clusters of data

the rules are generated.

Evaluation Metric

For the comparison result three parameters are used

and they are accuracy, precision and recall and their

calculations are as follows

 Accuracy = (TP + TN) / (TP + TN + FP +
FN) = #correct / #all_instances

 Precision = TP / (TP + FP) =

#correct_positive / #classified_as_positive

 Recall = TP/ (TP + FP) = # correct_positive

/ #classified_as_correct_positive

Table 1: Attribute Description of the four Dataset

S.No Variables Description

1 Loc McCabe's line count of code

2 v(g) McCabe "cyclomatic

complexity"

3 ev(g) McCabe "essential complexity"

4 iv(g) McCabe "design complexity"

5 N Halstead total operators +

operands

6 V Halstead "volume"

7 L Halstead "program length"

8 D Halstead "difficulty"

9 I Halstead "intelligence"

10 E Halstead "effort"

11 B Halstead

12 T Halstead's time estimator

13 lOCode Halstead's line count

14 lOComment Halstead's count of lines of

comments

15 lOBlank Halstead's count of blank lines

16 lOCodeAndComment

17 uniq_Op unique operators

18 uniq_Opnd unique operands

19 total_Op total operators

20 total_Opnd total operands

21 branchCount % of the flow graph

22 Defects Yes/No module has/has not one

or more

Table 2: Performance Evaluation of the proposed Fuzzy K-

Mediods with K-means and K-Medoids

K-Medoids
Fuzzy K-

Medoids

Intuitionistic

Fuzzy K-

medoids

Correctly Clustered

Instance
300 305 420

Incorrectly

Clustered Instance
198 193 78

Accuracy 69% 81% 90%

Precision 75% 87% 94%

Recall 72% 86% 92%

The table shows the performance of the proposed

intuitionistic fuzzy k-medoids clustering method for

finding the similarity pattern of the software defect

analysis with the existing approaches namely K-

Medoids and Fuzzy K-Medoids. The simulation

result analysis are done based on the metrics like

correctly clustered instances, incorrectly clustered

instances, accuracy, precision and recall of the each

methods.

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 48

Fig 2: Performance comparison of the clustering methods
based on correctly clustered instances

The chart depicts the performance of the methods k-

medoids, Fuzzy K-Medoids, Intuitionistic fuzzy K –

medoids based on how they determine the number of

instances classified in correct cluster. The
performance of the intuitionistic fuzzy based K-

Medoids is exhibiting high correctly classified

instances because of its ability to handle the

uncertainty by using the degree of hesitation.

Fig 3: Performance comparison of the clustering methods
based on incorrectly clustered instances

The chart shows the incorrectly clustered instances

the performance of the intuitionistic fuzzy k-medoids

produces less number of false clustering of instances

while comparing the fuzzy K-Medoids and K-

Medoids. Because both the existing approaches fails

to handle the instances while they hold vague

information or lie on the boundary of the cluster.

Fig 4: Performance comparison of the clustering methods

based on accuracy

The figure shows the performance of the three

methods K-Medoids, Fuzzy-K Medoids, Intuitionistic

Fuzzy K-Medoids in which the proposed work

accuracy is much better than other two existing

approaches this is due to the fact that Intuitionistic

fuzzy Medoids well-handled the problem of

uncertainty in clustering the instances with the help

of degree of non-membership and hesitation while it

is failed by the other two methods.

Fig 5: Performance Analysis of the clustering methods

based on Precision and Recall

The precision and recall value of each methods are
shown in the figure where the performance of the

intuitionistic fuzzy logic is better than the other two

existing approaches namely K-Medoids, Fuzzy K-

Medoids.

Conclusion

In this paper, the performance of the Intuitionistic

Fuzzy K-Medoids based Clustering of Applications is

0

100

200

300

400

500

K-Medoids Fuzzy K-
Medoids

Intuitionistic
Fuzzy K-
medoids

Correctly Clustered Instance

Correctly Clustered Instance

0

50

100

150

200

250

K-Medoids Fuzzy K-

Medoids

Intuitionistic

Fuzzy K-

medoids

Incorrectly Clustered
Instance

Incorrectly Clustered Instance

0%
20%
40%
60%
80%

100%

K-Medoids Fuzzy K-
Medoids

Intuitionistic
Fuzzy K-
medoids

Accuracy

Accuracy

0%
20%
40%
60%
80%

100%

P
er

ce
n

ta
ge

Precision Recall

International Journal of Computer Trends and Technology (IJCTT) – Volume 55 Number 1- January 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 49

explored for level of software defect prediction. The

result shows that the performance of proposed

method is better than the existing fuzzy K-medoids

for the four different dataset collected from the

NASA repository. The reduced features are used for

clustering and the fuzzy logic based rule generation is
done for performing the classification accuracy. Most

of the cases the problem of uncertainty or vagueness

in deciding about the instances to which they belong

is common. Such kind of instances has to be handled

in a special way because the misleading of such

instances to wrong decision may increase the rate of

false alarm so this proposed Intuitionistic fuzzy logic

overwhelms this problem by introducing the degree

of hesitation for handling the special case of

instances very precisely.

References

1. G. Graham, E.V. Veenendaal, I. Evans, R. Black,

“Foundations of Software Testing: ISTQB

Certification”, Thomson Learning, United Kingdom,

2007.

2. N.E. Fenton, M. Neil, “A Critique of Software Defect

Prediction Models”, IEEE Transactions on Software

Engineering, vol. 25, no.5, pp.675-689, 1999.

3. B. Clark, D. Zubrow, “How Good is the Software: A

Review of Defect Prediction Techniques”, Carnegie

Mellon University, USA, 2001.

4. V. Nayak, D. Naidya, “Defect Estimation Strategies”,

Patni Computer Systems Limited, Mumbai, 2003.

5. M. Thangarajan, B. Biswas, “Software Reliability

Prediction Model”, Tata Elxsi Whitepaper, 2002.

6. D. Wahyudin, A. Schatten, D. Winkler, A.M. Tjoa, S.

Biffl, “Defect Prediction using Combined Product and

Project Metrics: A Case Study from the Open Source

“Apache” MyFaces Project Family” In Proceedings of

Software Engineering and Advanced Applications

(SEAA '08), 34th Euromicro Conference, pp. 207-215,

2008.

7. Sinovcic, L. Hribar, “How to Improve Software

Development Process using Mathematical Models for

Quality Prediction and Element of Six Sigma

Methodology”, In Proceedings of the 33rd International

Conventionions 2010 (MIPRO 2010), pp. 388-395,

2010.

8. E.J. Weyuker, T.J. Ostrand, R.M. Bell, “Using

Developer Information as a Factor for Fault

Prediction”, In Proceedings of the Third International

Workshop on Predictor Models in Software

Engineering (PROMISE'07), pp.8, 2007.

9. T. Gyimothy, R. Ferenc, I. Siket, “Empirical Validation

of Object-Oriented Metrics on Open Source Software

for Fault Prediction”, IEEE Transactions on Software

Engineering, vol. 31, no.10, pp. 897-910, 2005.

10. J.S. Collofello, “Simulating the System Test Phase of

the Software Development Life Cycle”, In Proceedings

of the 2002 Summer Software Computer Simulation

Conference, 2002.

11. L. RadliRski, “Predicting Defect Type in Software

Projects”, Polish Journal of Environmental Studies,

vol.18, no. 3B, pp. 311-315, 2009.

12. M. Staron, W. Meding, “Defect Inflow Prediction in

Large Software Projects”, e-Informatica Software

Engineering Journal, vol. 4, no. 1, pp. 1-23, 2010.

13. T. Fehlmann, “Defect Density Prediction with Six

Sigma”, Presentation in Software Measurement

European Forum, 2009.

14. S.W. Haider, J.W. Cangussu, K.M.L. Cooper, R. Dantu,

“Estimation of Defects Based on Defect Decay Model:

ED3M”, IEEE Transactions on Software Engineering,

vol. 34, no. 3, pp. 336-356, 2008.

15. L. Zawadski, T. Orlova, “Building and Using a Defect

Prediction Model”, Presentation in Chicago Software

Process Improvement Network, 2012.

16. M. Li, H. Zhang, R. Wu, Z.H. Zhou, “Sample-based

Software Defect Prediction with Active and Semi-

supervised Learning”, Journal of Automated Software

Engineering, vol. 19, no. 2, pp. 201-230, 2012.

17. Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, “An

Investigation on the Feasibility of Cross-Project Defect

Prediction”, Journal of Automated Software

Engineering, vol. 19, no. 2, pp. 167-199, 2012.

18. T.J. Ostrand, E.J. Weyuker, “How to Measure Success

of Fault Prediction Models”, In Proceedings of Fourth

International Workshop on Software Quality Assurance

2007 (SOQUA ’07), pp. 25-30, 2007.

19. L.P. Li, M. Shaw, J. Herbsleb, “Selecting a Defect

Prediction Model for Maintenance Resource Planning

and Software Insurance”, In Proceedings of 5th

Workshop on Economics-Driven Software Engineering

Research (EDSER '03), pp. 32-37, 2003.

20. M. D’Ambros, M. Lanza, R. Robbes, “Evaluating

Defect Prediction Approaches: A Benchmark and an

Extensive Comparison, Journal of Empirical Software

Engineering, vol. 17, no. 4-5, pp. 531-577, 2012.

21. Kaufman, L. and Rousseeuw, P.J. (1987), Clustering by

means of Medoids, in Statistical Data Analysis Based

on the Norm and Related Methods, edited, North-

Holland, 405–416.

