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Abstract —   Time delays and external 

disturbances are unavoidable in many practical 

control applications, e.g., in robotics, 

manufacturing, and process control and it is often a 

source of instability or oscillations, see, e.g., [1,2] 

and the references therein. Therefore, the design of 

control and observation schemes has been an 

interesting problem for dynamical systems to 

compensate for time delays [3] and to estimate 

external disturbances [4]. To enhance robustness, 

the sliding mode control methodology has been 

recognised as an effective strategy for uncertain 

systems, see, e.g.,  and references therein. In this 

context, there have been considerable efforts 

devoted to the problem of sliding mode control 

design for uncertain systems with matched 

disturbances, see, e.g., [5,6] and references therein. 

However, when the matching conditions for 

disturbances are not satisfied, their effects can be 

only partially rejected in the sliding mode. 

Therefore, the control design for this case remains a 

challenging problem. 

For a class of linear systems with time-varying 

delay and unmatched disturbances, a sliding-mode 

control strategy was developed in  and sufficient 

conditions were derived in terms of linear matrix 

inequalities (LMIs) to guarantee that the state 

trajectories of the system converge towards a ball 

with a pre-specified convergence rate. By using the 

invariant ellipsoid method, another sliding mode 

control design algorithm was proposed for a class 

of linear quasi-Lipschitz disturbed system to 

minimise the effects of unmatched disturbances to 

system motions in the sliding mode . Later, by 

combining the predictor-based sliding mode control 

with the invariant ellipsoid method, an improved 

result was reported to take into account also time 

delay in the control input [10]. Recently, a 

disturbance observer-based sliding mode control 

was presented in  where mismatched uncertainties 

were considered. 

Keywords — Quasi-Sliding, Model Control, Time-

Delay Systems, Lyapunov Functionals. 

I. INTRODUCTION  

Owing to advantages of digital technology, 

there has been increasing attention paid to the 

discrete-time sliding mode control. In [12], the 

quasi-sliding mode control and the associated quasi-

sliding mode band (QSMB) and reaching law were 

introduced for single input discrete systems. 

Another quasi-sliding mode control design 

algorithm was reported in [11], adopting a different 

reaching law. A discrete-time sliding mode 

controller was synthesised to drive the system state 

trajectories into a small bounded region for a class 

of linear multi-input systems with matching 

perturbations [13]. A robust quasi-sliding mode 

control strategy was proposed in [61] for uncertain 

systems using multirate output feedback. In , a 

predictor-based sliding mode control law was used 

to deal with discrete-time uncertain systems subject 

also to an input delay. In , a sufficient condition for 

the existence of stable sliding surfaces, depending 

on the lower and upper delay bounds, was derived in 

terms of LMIs. Recently, some improved results for 

this problem have been reported in [7,8,9]. 

In the framework of discrete-time sliding mode 

control, the problem of compensation for time-

varying delay and rejection of the unmatched 

disturbance effects has not received much attention 

and so it will be addressed in this chapter. Here, by 

using the L-K method, in combination with the 

reciprocally convex approach, sufficient conditions 

for the existence of a stable sliding surface are 

derived in terms of LMIs. Moreover, these 

conditions guarantee that the effects of interval 

time-varying delay and unmatched disturbances are 

mitigated, and the induced sliding dynamics are 

exponentially convergent within a ball with a radius 

to be minimised. A robust discrete-time quasi-

sliding mode is then synthesised to drive the state 

trajectories of the closed-loop system towards the 

prescribed sliding surface and remain in this ball 

after a finite time. 

The paper is organized as follows. After the 

introduction, presents the system definition and 

some preliminaries. The main results are included. 

The effectiveness of the proposed control approach 

is illustrated through numerical examples. Finally, 

concludes of the paper  

 

II. PROBLEM STATEMENT AND PRELIMINARIES 

 
Consider a class of linear discrete-time uncertain 

systems described in the following form 

x(k + 1) = Ax(k) + Adx(k − τ(k)) + Bu(k) + Dω(k), k ∈ Z+, 

 

x(k) ≡ φ(k), k ∈ Z[−τM,0], 
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where x(k) ∈ Rn and u(k) ∈ Rm are, respectively, 

the system state vector and the control input. 

Matrices A,Ad,B and D are constant, with 

appropriate dimensions, where rank(B) = m ≤ n. The 

initial function of system, φ(k),k ∈ Z[−τM,0], has its 

norm given by 

.  

The delay τ(k) is time-varying delay in the 

whole process and satisfying 

0 ≤ τm ≤ τ(k) ≤ τM,  

where τm and τM satisfying τm < τM, are known 

positive integers representing, respectively, the 

minimum and maximum delay bounds. The 

unmatched external disturbance ω(k) ∈ Rp is 

assumed to be bounded, i.e., for any k ≥ 0, 

,  

where ωp is a positive scalar. 

It can be shown that if B is a full-column rank 

matrix, i.e., rank(B) = m, there exists a non-

singular transformation matrix T which can always 

be chosen such that  ,  

where B2 ∈ Rm×m is a non-singular matrix 

[71]. With z(k) = Tx(k), 

system can be transformed into the 

following regular form: 

 

z(k + 1) = Az(k) + Adz(k − τ(k)) + Bu(k) + Dω(k)) 

where 

 , 

Now, by partitioning z(k) = [z1(k) z2(k)]T , 

where z1(k) ∈ Rn−m and z2(k) ∈ Rm, the dynamics 

of system 

 
can be described by 

 

 

The main purpose is first to derive sufficient 

conditions for the existence of a stable sliding 

surface such that in the induced sliding dynamics, 

the effects of time-varying delay and unmatched 

disturbances can be mitigated. These conditions also 

guarantee that all the state trajectories are 

exponentially convergent to a ball whose radius can 

be minimised. Finally, a discrete-time quasi-sliding 

mode controller is proposed to drive the system state 

trajectories to the quasi-sliding mode. 

 

III. ROBUST QUASI-SLIDING MODE CONTROL 

DESIGN 

 

A.  Sliding function design 

The sliding function for system  is proposed as 

follows, 

 

s(k) = Cz(k) = [−C I]z(k) = −Cz1(k) + z2(k), (5.7) 

where C ∈ Rm×(n−m) is a constant matrix to be 

designed. In the induced sliding mode, we have s(k) 

= 0 so that z2(k) = Cz1(k). The reduced-order 

sliding motion can thus be obtained as 

z1(k + 1) = [A11 + A12C]z1(k) + [Ad11 + 

Ad12C]z1(k − τ(k)) + D1ω(k).  

Note that the sliding surface design is now 

equivalent to the stabilisation problem for system 

(A11,A12,Ad11,Ad12) where (A11,A12) and 

(Ad11,Ad12) are assumed to be controllable. 

Reduced-order system will be stabilised by choosing 

an appropriate matrix C. Due to the presence of the 

unmatched disturbances ω(k), in general, the 

asymptotic convergence of state trajectories of 

system cannot be achieved. In that case, instead of 

investigating asymptotic stability of the system, we 

consider the system state convergence within the 

neighborhood of the equilibrium point. However, 
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the shape of such a neighborhood is, in general, very 

complex and hard to determine exactly. Hence, the 

estimation of outer or inner bounding simple convex 

shapes as balls or ellipsoids or boxes will be 

considered. This is formalised in term of the 

existence problem, which must be solved to 

determine the switching surface. 

In the following, for the sake of simplicity, we 

denote e1 = [In−m 0(n−m)×8(n−m)], ei = 

[0(n−m)×(i−1)(n−m) In−m 0(n−m)×(9−i)(n−m)], i 

= 2,3,...,8, e9 = [0(n−m)×8(n−m) In−m] as entry 

matrices. The following notations are specifically 

used in our development. For given integers τm,τM 

satisfying 0 < τm < τM, any scalar λ, nonsingular 

matrix K ∈ R(n−m)×(n−m),F = K−1, matrices X,G, 

and symmetric positive definite matrices 

P,Qj,Rj,Sj,j = 1,2 of appropriate dimensions, we 

denote the following vectors. 

 

Constants 

 

And Matrices 

 

Now, we are ready to present the first 

theorem that gives sufficient conditions for 

the existence of a stable sliding surface as 

follows. 

Theorem  For system  with given positive 

integers τm and τM for the delay, where 0 < 

τm < τM, and disturbance bound ωp > 0, if 

there exist scalars λ and α, where α > 1, a 

nonsingular matrix K = F −1, matrices X,G 

and symmetric 

positive-definite matrices P,Qj,Rj,Sj,j = 1,2, 

of appropriate dimensions such that the 

following inequalities hold 

) 

 , (5.9b) 

where 

 

then the state trajectories of the sliding dynamics 

are exponentially convergent within a ball B(0,r) 

with radius 

       .                       

Moreover, the design matrix C can be obtained explicitly as  

C = GF. (5.11) 

Proof. Let us recall y(k) = z1(k + 1) − z1(k) 

= [A11 + A12C − I]z1(k) + [Ad11 + 

Ad12C]z1(k−τ(k))+D1ω(k). Consider the 

following Lyapunov-Krasovskii functional 

V (k) = V1(k) + V2(k) + V3(k) + V4(k),            

where 
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By taking the forward difference of V1(k) 

along the solutions of system, we have 

 

where z1(k + 1) = y(k) + z1(k). Therefore, 

ΔV1(k) can be obtained of the form 

 

The forward differences of V2(k) and V3(k) 

along the solutions of system  are obtained 

as 

, 

and                            

. 

For τm ≤ τ(k) ≤ τM,k ∈ Z+ and τm < τM,  

we have                                                                        

By using Lemma 1,the following estimation 

can be obtained as 

   

Using the same argument, we also have 

 
 

Where   ,    and 

 . 

Thus, from Lemma 2, we have the 

following 

estimation 

 

 

Next, the difference of V4(k) along the 

solutions of system is calculated as 
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follows.

 

By using Lemma 1, we 

have

 
Similarly, we also obtain 

 

Moreover, for any scalar λ and a non-

singular matrix F, by using the descriptor 

method, we always have the following 

equation 

 

. 

Note that from the above notations with 

some simple computations, equation can be 

rewritten in the form of 

.            

Finally, we obtain 

ΔV (k) + (1 − α−1)V (k) − (1 − α−1)ωT 

(k)ω(k) ≤ ξT (k)Ω(α)ξ(k),∀k ∈ Z+.    

Therefore, it follows from conditions  and  

of Theorem that 

ΔV (k) + (1 − α−1)V (k) − 

(1 − α−1)ωT (k)ω(k) ≤ 0 

which yields 

. 

From Lemma 3, we have 

.    

Thus, by using the spectral properties of 

symmetric positive-definite matrix, we 

obtain, 

 

 

This means that limk→∞ sup||z1(k)|| ≤ r. Thus, the 

induced sliding dynamics are bounded within a ball 

with radius r defined in . The proof is completed. 

Remark 9 Note that the obtained conditions in 

Theorem 22 are also not LMIs and the solution to 

this problem can be found by using the method, 

presented in Remark 2. 

Remark 10 As the radius of the ball B(0,r) in 

equation is  determined by  where δ = 

λmin(FT PF), to find the possible smallest radius r, 

one may proceed with a simple optimisation 

process as suggested in  to maximise δ subject to δI 

≤ FT PF, i.e., to formulate the following 

optimisation problem: minimise( ) subject to  
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)                  and  

Note that inequality FT PF ≥ δI is 

equivalent to (K−1)T P(K−1) ≥ δI. Pre- and 

post- multiplying this inequality by KT and 

its transpose, respectively, we obtain 

−P + δKT K ≤ 0. 

By using the Schur complement, we have 

(5.24) 

.                             

IV. ROBUST QUASI-SLIDING MODE CONTROLLER 

DESIGN 

In discrete-time quasi-sliding mode control, 

under the appropriate controller, the system 

trajectory, starting from any initial state, will be 

driven towards the sliding surface in finite time. 

After reaching the sliding surface, the state 

trajectories cross the sliding surface for the first 

time, and repeat that again in successive sampling 

periods, resulting in a zigzag motion along the 

sliding surface. This motion will be bounded inside 

a specified region, the so-called quasi-sliding mode 

band (QSMB)[12]. In the previous section, under 

appropriate conditions, in the sliding mode, the 

state trajectories of the system are convergent 

within a ball whose radius can be minimised. In the 

following, the objective is to design a robust 

discrete-time quasi-sliding mode controller to drive 

the system dynamics towards the above ball in 

finite time and maintain it there afterwards. 

First, it is noted from  that the external disturbance 

ω(k) is bounded, and so is the uncertain term d(k) 

= C Dω(k). Without loss of generality, we have, 

componentwise: 

dm ≤ d(k) ≤ dM.                  

From a physical perspective, by assuming 

the boundedness of z(k−τ(k)), and hence 

 
of vector a(k) = C Adz(k − τ(k)). We then 

have, similarly: 

am ≤ a(k) ≤ aM.                              

 define 

5.28) 

 

 

Fro

m 

sliding function , in which the design matrix 

C = [C1 C2 ...Cm]T is 

obtained from (5.11), we have s(k) = [s1(k) 

s2(k) ... sm(k)]T , where si(k) = 

−Ciz1(k) + z2i(k) and Ci is a row vector in 

R1×(n−m). 

Theorem 23 For given positive integers τm and τM 

of the delay, satisfying 0 < τm < τM, and a bound 

ωp > 0 of the external disturbance, if there exist 

scalars λ and α, where α > 1, a feasible solution of 

X,K,G,P and Qj,Rj,Sj, j = 1,2, for matrix 

inequalities ,  and , and with the sliding function 

chosen as in  for sliding motion , the state 

trajectories of system  are driven towards the 

sliding surface in a finite time under the following 

control law: 

, 

where sgn(s(k)) = 

[sgn(s1(k)),sgn(s2(k)),...,sgn(sm(k))]T , Ts 

is the sampling period, q = diag(q1, q2,..., 

qm) and ε = [ε1,ε2,...,εm]T , in which 

positive scalars qi and εi, i = 1,2,...,m, are 

chosen such that 1−Tsqi > 0 for quasi-

sliding mode bands Δi(k) given by 

.               

 
Proof. From the designed sliding function 

s(k) = Cz(k), we have 

 

 

 

 

 

 

. 

By substituting the control law  into 

equation , we obtain 

Δs(k) = − qTss(k) − εTs ◦ 

sgn(s(k)) 

+ [a(k) − a0 − a1 ◦ sgn(s(k))] 
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+[d(k) − d0 − d1 ◦ sgn(s(k))]. 

Now, we have to show that the proposed control 

scheme satisfies the reaching condition and the 

existence of the quasi-sliding mode is guaranteed. 

This requires that the sign of the incremental 

change Δs(k) = s(k + 1) − s(k) should be opposite 

to the sign of s(k), componentwise. 

It is easy to see that when s(k) > 0, we have 

 

Thus, by judging the sign of the four terms 

constituting Δs(k) in , we can see that the sign of 

the increment Δs(k) of  is always opposite to the 

sign of s(k), componentwise. Thus, if design 

parameters qi > 0 and εi > 0 are chosen with 1 − 

qiTs > 0, i = 1,2,...,m, then a quasi-sliding mode 

exists with quasi-sliding 

mode bands [36]. This completes the 

proof.  

Remark 11 It is worth mentioning that in this 

chapter, the quasi-sliding mode control law  is 

obtained from the sliding function , whereby the 

design matrix C can be computed directly from  

after the solution of conditions  and the optimisation 

process mentioned in Remark 2. This gives 

designers a certain liberty in selecting the controller 

parameters in for a desired QSMB as compared to 

existing methods in the literature, where the QSMB 

is determined subsequently from the design of a 

quasi-sliding mode control law. 

 Example  

Consider a truck-trailer system for the case of 

unmatched external disturbance 

which was given in  as follows 

 
where x(k) = [x1(k) x2(k) x3(k)]T is the system 

state vector of the angle difference between the 

trailer and the truck, the angle of the trailer, and the 

vertical position of the rear end of the trailer, 

respectively. The control input signal u(k) is the 

steering angle. Here, the truck-trailer system is 

assumed to be subject to an external disturbance 

ω(k) with an upper bound ωp = 0.3. The control 

objective is to minimise the effects of time-varying 

delay and unmatched disturbances, while backing 

the trailertruck along the horizontal line x3(k) = 0 

in a safe and robust manner. Note that the proposed 

approaches in  are available for linear discrete-time 

systems with time-varying delay and matched 

disturbances. Therefore, it can not apply for this 

case. For this, the sampling period is chosen as Ts 

= 0.1 sec. Matrix T of the transformation z(k) = 

Tx(k) can be obtained from a singular value 

decomposition 

of matrix B as: 

 
From Theorem 22 and Remarks 9 and 10, 

by choosing α = 1.15,λ = 0.6 and solving 

matrix inequalities  and , we obtain the 

following matrices 

. 

Thus, the switching gain is calculated as C = 

[−1.3105 2.2547]. As a result, the sliding function 

is obtained as 

s(k) = [−1.3105 2.2547 

1]z(k). 
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Moreover, the possible smallest radius of the ball 

which bounds the state trajectories of the reduced-

order system can be obtained as r = 0.01. With the 

assumption of boundedness of the external 

disturbance ωp = 0.3, the average and variation 

magnitude of the disturbance-related uncertainty 

d(k) can be found as 

d0 = 0,d1 = 0.0107. 

Similarly, we have for the delay-related 

uncertain term a(k) a0 = 0 and a1 = 0.0012. 

By choosing q = 2 and ε = 0.016 for a 

QSMB of Δ = 0.002, from Theorem 23, the 

robust discrete-time quasi-sliding mode 

controller is obtained in the 

form

 
With an initial condition of the system of x(k) = 

[0.2 0 − 0.85]T , and the timevarying delay τ(k) is a 

random integer belonging to the interval , the state 

responses of the reduced-order system via z(k) and 

closed-loop system are shown in figures   and  

respectively. It can be seen in the inset of  that after 

reaching the sliding surface, the states trajectories 

of the reduced-order system exponentially 

converges within a ball with radius r ≤ 0.01 in spite 

of time-varying delay and unmatched external 

disturbances. The responses of the control input 

signal and the sliding surface are depicted 

respectively to illustrate the steering process of the 

truck-trailer system. These indicate that 

 

 

 

 

 

State responses of the reduced-order system 

with unmatched disturbances the effects of 

time-varying delay and unmatched bounded 

disturbances have been successfully 

suppressed by using the proposed controller. 

Example  

Now, consider the truck-trailer system in the 

case of without external disturbances (i.e., ω(k) = 

0). The control objective is still the same. From 

Theorem 22, by choosing α = 1.15,λ = 1.4 and 

solving matrix inequalities, we obtain the following 

matrices 

 . 

Thus, the design matrix C is calculated as C 

= [−0.8817 1.1819]. As a result, the sliding 

surface is obtained as 

s(k) = [−0.8817 1.1819 

1]z(k). 

 

Figure: State responses of the closed-loop 

system with unmatched disturbance 

 

 

Figure : Steer angle u(k) of the truck-trailer 

system with unmatched disturbances 

 

 

Sliding function s(k) of the truck-trailer 
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system with unmatched disturbances 

Similarly, the bound of uncertainty a(k) is 

determined as a1 = 7.9694x10−5. By using 

the same controller parameters as in. 

Theorem , the robust discrete-time quasi-

sliding mode controller is obtained of the 

form 

 

For the sake of demonstration the effectiveness of 

the proposed control schemes in terms of 

robustness to time-varying delay, the initial 

conditions x(k) = [0.1 0 −0.1]T will be used. The 

obtained conditions are still feasible with an 

interval time-varying delay [τm τM], where τM ≤ 

16.  The state responses of the closed-loop system 

exponentially converge to the origin. The control 

input signal and sliding surface are depicted in 

figures. It can be seen clearly that the close-loop 

control system is robustly stable with a large range 

of time-varying delay. It is worth pointing out that 

by comparing simulation results with Example 

 The proposed control scheme is more 

effective for the truck-trailer 

 

 

 

 

 

 

Figure  : State responses of the closed-loop 

system without external disturbances 

system in the absence of external 

disturbances. 

V. CONCLUSION 

In this chapter, the problem of robust discrete-

time quasi-sliding mode control design for a class 

of linear discrete-time systems with time-varying 

delay and unmatched disturbances has been 

addressed. Based on the Lyapunov-Krasovskii 

method, combined with the reciprocally convex 

approach, sufficient conditions for the existence of 

a stable sliding surface are derived in terms of 

matrix inequalities. These conditions also guarantee 

that the effects of time-varying delay and 

unmatched disturbances are mitigated when the 

system is in the sliding mode. Finally, a discrete-

time quasi-sliding mode controller is proposed to 

satisfy the reaching condition. Numerical examples 

are provided to illustrate the feasibility of the 

proposed approach. 

 

                   
Figure : Steer angle u(k) of the truck-trailer system 

without external disturbances 

 

Figure : Sliding function s(k) of the truck-

trailer system without external disturbances 
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