
International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 133

Securing the Operating System
A Software Based Approach in Linux

*Prabhav S, *Madhav V Deshpande, *Rakshak R Kamath, *Rohan N, #Rakesh Kumar, $Latha N R
*Undergraduate Students, #Head, CCSD/CIG, ISAC, Bengaluru, India

$ Assistant Professor Dept. of Computer Science and Engineering BMS College of Engineering Bengaluru,

India

Abstract—Linux is one the most widely used operating

systems. With its inherent ubiquity come its many flaws. In

this implementation the aspect of system security is

considered. We have implemented a kernel patch which

isolates the execution of ELF files in Ubuntu. The

signatures of these files are verified before the loading and

execution can proceed. We verify the path of the file and its

hash value. Any change in path or the contents of the file

and hence change in its hash value will prevent it from

being executed and hence a safe execution environment is

provided. The kernel with the security patch takes an

average of 0.006 seconds more time than the kernel without

the patch which means the user of such a system will not

feel any delays in execution.

Keywords - linux; kernel; system security;

cryptographic hash;

I. INTRODUCTION

Linux has been the most widely used operating
system. From personal computers to embedded
systems and servers all use some form of Linux.
Although its popularity has exploded since its
inception, it has had its share of problems as seen in
[7] and [8]. One such problem is unauthorized access
control hence gain of system access. IT infrastructure
has been constantly bombarded by malicious content
that is more complicated, sophisticated and easier to
hide. As stated by the McAfee Threat Report [4], the
number of unique malicious and unwanted programs,
in the first and second quarters of 2012 alone, has
increased by 8 million. These 8 million samples are
inclusive of dangerous rootkits which are a growing
menace. According to the threat report over 100,000
rootkit variants have been reported in the last 14
quarters.

A similar report from Kaspersky Lab [4] shows a
tenfold growth in malicious programs in 2008. The
increase from 2.2 million to 20 million malicious
programs shows that malware is increasing without
inhibition. This results in software security being
crucial for any organization. Linux provides some
security by discretionary access control as a means of
restricting access to objects based on the identity of
subjects and/or groups to which they belong to. This
mechanism provides same privileges to a group. Any
processes created by a user in the group will have the
same privilege. This means that one flaw in the
software eventually can lead to compromise of data of
the entire group. Other threats include the act of
giving an application more permission than they
require and also replacing system modules with rogue

modules. Thus the mechanisms provided by Linux can
clearly be circumvented.

Hence, we have made an attempt to increase the
security of Linux systems through the implementation
of a Trusted Environment for ELF files. We compare
the signatures of these file with the signatures in a
database before execution. The files which fail
verification are written to log files which can be
checked by the user who can accordingly modify the
database. Two user space daemons monitor the
integrity of database and log files respectively. We
also have an application through which the database
can be changed. This software implementation can be
deployed easily as the Trusted Environment is in the
Linux kernel itself without the need for any other
specific software and external hardware. Also the fact
that similar Linux kernels are used by many
distributions means that the environment can also be
deployed on any of these distributions. Although the
application is in the user space and must be
downloaded, it is easier than using restricted software
implementing security mechanisms or hardware
dependent mechanisms which may not be deployable
on a large scale.

II. RELATED WORK

This section gives a brief overview of the existing

work in Trusted Environment developed by various

organizations. An important distinction is that all

these implementations are hardware based

implementations. Firstly, IBM implemented a secure

computing environment in UNIX. According to [2]

Trusted Execution refers to a set of features which

implement advanced security policies to increase the

trust level of the computer. Through a set of hardware

switches and the AIX, IBM has been successfully

able to produce a version of UNIX operating system

with augmented security. They implement security

policies to measure and verify integrity of the system

files using a database called Trusted Signature

Database. A trusted file is a file that is paramount to

uphold the security of a system and on being

compromised can lead to a breach in security. Also,

they use a Trusted Execution Path which defines a list

of directories that contains executables. This means

the loader allows only those binaries which are

loaded from any of the directories

Intel has also developed a hardware based

approach to Trusted Execution. It is called Trusted

Execution Technology. It defines Trusted Execution

technology as “a highly versatile set of hardware

International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 134

extensions to Intel chipsets that with the appropriate

software can enhance the security capabilities”

[5].This works by creating Measured Launch

Environment (MLE) to compare the critical

components of launch against a good source. On

boot, the measured launch of BIOS to check integrity

ensures startup security and subsequently the

measured launch of hypervisor which in turn loads

the software. On successful boot, the trust level of the

platform can be reported. Intel TXT also defines roots

of trust for successful evaluation of the environment.

ARM implements its version of Trusted

Environment called TrustZone. ARM defines

TrustZone as “The TrustZone hardware architecture

aims to provide a security framework that enables a

device to counter many of the specific threats that it

will experience. Instead of providing a fixed one-size-

fits-all security solution, TrustZone technology

provides the infrastructure foundations that allow a

designer to choose from a range of components that

can fulfil specific functions within the security

environment” [3]. It works by partitioning the system

into a normal and secure world. The secure world is

for security sub system whereas the normal world for

everything else running in a time-sliced fashion.

III. PROPOSED SYSTEM

In the following section we explain in detail the
modules and process involved in the development of
Trusted Environment in software in Linux using the
important aspects from the previous section.

A. Startup Security

On boot, the database is loaded into memory and
this hash value is calculated for the entire image. A
SHA512 hash value is generated and this is compared
with the hash value of the system before its last
shutdown. This value keeps changing as the database
is changed during system operation. If the verification
is successful, the Trusted Verification is enabled in the
kernel loader. Else, a notification is sent to the
administrator to manually verify the integrity of the
database and restart the system for the changes to be
applied.

B. Trusted Verification

This module performs the integrity checks on the

ELF files before they are mapped into the memory

and executed. The kernel receives and passes the user

land pointer of the ELF file which is the absolute path

of the file for verification. This path is then verified

with the one in the database and only on successful

verification, the signatures are verified. The signature

again is a SHA512 hash value. In the kernel the hash

value is calculated using a crypto API. Only when

both the path and the hash value of the executable is

verified will the process continue, else he path of the

file is written into the logs.

C. Trusted Database

This is the internal database which stores the path

and hash value of the executables in a specific format.

This database can only be changed by the Trusted

Application to add, remove or modify the database.

Fig.1 shows the database.

FIGURE-1 TRUSTED DATABASE

D. User Space Processes

User space processes include the Trusted

Application, log files and two daemons. The

application is the only way to modify the database

and provides the user a GUI based method to interact

with the database. The log files in question are the

kernel log file and the executable log file with the

former the place where the kernel outputs the path of

the file that failed verification and the latter a

formatted file to store the absolute path of the

executables not in the database. Also, there are two

daemons monitoring the integrity of the database and

also monitoring the log files for any update. Any

change in these two files cause a notification to the

administrator and the opening of the application to

manually verify the integrity of the database. On any

change the hash value of the database, and the

database images in the kernel are all updated.

IV. SYSTEM ARCHITECTURE

The architecture of the system is depicted in Fig.2.

It shows the four modules along with their operations.

The two kernel modules are connected by the kernel

thread where the enabling of the Trusted Verification

is dependent on startup security check. The database

image is passed to the kernel on startup through the

virtual file system. Any changes to the database are

made to the image in the user space and this is

updated in the kernel space only on reboot. The user

daemons interact with the Verification module

through the logs. They also monitor the user space

database image for any changes and interacts with the

application as needed.

International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 135

FIGURE-2 SYSTEM ARCHITECTURE OF TRUSTED

ENVIRONMENT

V. WORKING OF THE SYSTEM

On boot, the integrity of the system is checked. On

failure, a notification is sent to the user informing of

the same and post boot, the application is opened so

that the administrator can make effective changes and

reboot. The Trusted Application is secured by a

password known only to the administrator. After the

startup security check has been successfully passed,

Trusted Verification is enabled. Any ELF file now

being executed is checked before being executed. On

failure of the check, the absolute path along with the

current timestamp is written into the kernel log file.

Subsequently, this file is check to find ELF file paths

as the kernel can log anything. These selected paths

are written to the executable log file and as soon as

this file is changed the application is opened. Any

changes made to the database are reflected on their

images and also on the signatures only after boot. The

state where the verification was a success is the

secure state and the other being the unsecure state.

The Trusted Environment ensure that the system is

always in the secure state or tries to reach the secure

state.

FIGURE-3 TRANSITION DIAGRAM OF TRUSTED
ENVIRONMENT

VI. VERIFICATION OF SYSTEM INTEGRITY

System integrity can be defined as using the state
of the system that is termed as good and one which
cannot be changed as a reference to check the state of
the system periodically. According to [4] the
requirements of a good integrity tool are “Integrity
Measurement”, “Lockdown” and “Monitor and
Protect”. Integrity Measurement is to provide the
administrator tools to detect changes to the system. In
case of any change there should be a mechanism of
locking down the baseline information to prevent any

intruder of modifying the system. The last requirement
should provide means to monitor files identified as
critical files which are being monitored.

Changes to the system can be measured using hash

values. The [1] SHA algorithm proves superior to any

other algorithm. In [4], SHA256 hashes are calculated

and used. In this implementation, SHA512 hashes are

used to increase the size of the digest and to prevent

any imminent collisions. [1] and [6] help in analyzing

the SHA512 and MD5 hashes respectively. The fact

that SHA512 has a bigger message digest means that

there are many more possibilities as compared to the

MD5 sums and this leads to fewer collisions [9]. Also

it takes less than 64 bits to crack the MD5 digest and

many attacks have been reported but it takes more

than 120 bits to crack the SHA512. No successful

attacks on the SHA512 have been reported yet.

TABLE I. COMPARISON BETWEEN MD5 AND SHA512

Keys for

comparison

 MD5

SHA512

Output size in
bits

128 512

Block size in

bits

512 1024

Rounds 64 80

Max message

size

Unlimited 2128-1

Speed
Faster with

only 64

iterations

Slower with 80
iterations

Attacks to find
original

message

2128 operations
required to

break

2512 operations
required to

break

Successful

attacks

Attacks

reported

No such

reported attacks
yet

VII. PERFORMANCE ANALYSIS

A performance analysis for Trusted Execution was

conducted by running an executable for a certain

number of times on both the kernels. Fig.4 shows

how long it takes the generic kernel to execute the

command “LS” 10 times and the same criteria is

carried out on the kernel with Trusted Execution in

Fig.5. It can be seen that the latter has an average

execution time of 0.006 seconds more than the

generic kernel. This was true for all executables

tested with a range of 0.002 seconds higher or

lower.

FIGURE-4 PERFORMANCE ANALYSIS ON A GENERIC

KERNEL

International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 136

FIGURE-5 PERFORMANCE ANALYSIS ON A CUSTOM
KERNEL

ACKNOWLEDGMENT

We are grateful to BMS College of Engineering for

having provided us with the facilities needed for the

successful completion of this paper. We are also

grateful to ISRO Satellite Center for their constant

help and support. The work reported in this paper is

supported by the college through the TECHNICAL

EDUCATION QUALITY IMPROVEMENT

PROGRAMME

[TEQIP-II] of the MHRD, Government of India.

REFERENCES

[1] “The MD5 Message-Digest Algorithm” R.Rivest , MIT
Laboratory for Computer Science and RSA Data Security,
Inc. April 1992.

[2] AIX V6 Advanced Security Features Introduction and
Configuration, 2007.

[3] ARM, "Security technology building a secure system using
trustzone technology (white paper)." ARM Limited (2009).

[4] “Verifying System Integrity”, Sourabh Desai, George
Koikara, Pruthvi Natarajan and Ravi Shankar, 2009

[5] Intel Trusted Execution technology: White paper 2012.

[6] FIPS, PUB. “180-4-Federal Information Processing
Standards Publication-Secure Hash Standard (SHS)-National
Institute of Standards and Technology Gaithersburg.” (2012):
20899-8900.

[7] Younan Y. “25 Years of Vulnerabilities: 1988-2012[J]”,
Sourcefire Crop, 2013.

[8] “Overview of Linux Vulnerabilities”. International
Conference on Soft Computing in Information
Communication Technology (SCICT 2014)”

[9] “Review paper on Secure Hashing Algorithm and its
variants”,Priyanka Vadhera, Bhumika Lall, International
Journal of Science and Research (IJSR) ISSN (Online): 2319-
7064,2014

