International Journal of Computer Trends and Technology (IJCTT) — Volume 47 Number 4 May 2017

Loop Block Profiling with Performance
Prediction

Mohsin Khan"! , Maaz Ahmed™?, Waseem Ahmed® , Rashid Mehmood* , Abdullah Algarni® ,
Aiiad Albeshri® | Iyad Katib*’

*Dept. of Computer Science and Engineering, HKBK College of Engineering, Visvesvaraya Technological University,

Bangalore, India

# Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, KSA

Abstract—With increase in the complexity of High
Performance Computing systems, the complexity of
applications has increased as well. To achieve bet-
ter performance by effectively exploiting parallelism
from High Performance Computing architectures, we
need to analyze/identify various parameters such as,
the code hotspot (kernel), execution time, etc of the
program. Statistics say that a program usually spends
90% of the time in executing less than 10% of the
code. If we could optimize even some small portion of
the 10% of the code that takes 90% of the execution
time we have a high probability of getting better
performance. So we must find the bottleneck, that is
the part of the code which takes a long time to run
which is usually called the hotspot. Profiling provides
a solution to the question: which portions of the
code should be optimized/parallelized, for achieving
better performance. In this research work we develop
a light-weight profiler that gives information about
which portions of the code is the hotspot and esti-
mates the maximum speedup that could be achieved,
if the hotspot is parallelized.

Keywords—Profiling, Loop Block Profile, Code
Analysis, Performance Prediction, Speedup Estima-
tion

I. INTRODUCTION

In the last decade we have seen a rapid growth
of programming techniques towards parallelism. Pro-
cessor clock frequencies are at their peak limits
and latest processors have multiple cores, and ac-
celerators have started to become more common
on HPC systems, assisting to process the scientific
programs faster. Hence parallelism is now important
for all the legacy and newly developed applications.
But parallel programming is not so easy than its
sequential counterpart, and exploiting parallelism is
much more difficult to achieve. Recently, there is
an extensive use of parallel programs to build high
performance applications. These applications run on
different heterogeneous architectures.

With increase in the complexity of High Perfor-
mance Computing systems, the complexity of appli-

cations has increased as well. Achieving better per-
formance on leading technology systems is crucial.
The inability to utilize such HPC systems efficiently
causes a wastage of resources. It is observed that
in order to achieve better performance by effectively
exploiting parallelism from these architectures, we
need to analyze/identify various parameters such as,
the code hotspot (kernel), main memory usage, cache
utilization, execution time, etc of the program. As
a result, there is a real need of effective tools that
can point out a variety of performance bottlenecks in
scientific applications. Hence profiling plays a very
important role in code optimization for both serial
and parallel computing. Profiling provides a solution
to the question: which portions of the code should
be worked on, for achieving better performance. Also
there is a need of a profiler that is fast and does not
add a huge overhead on the execution of time of the
program. Adding a huge overhead on the execution
time will produce incorrect execution time there by
giving inaccurate results. The profiler we propose
here only performs small modification on the source
code and is very light-weight in use, that is, it does
not add huge overhead on the execution time of the
input program.
The main contribution of this research paper are
o a light-weight loop block profiler that gives
information about the hotspot loops of the code,
such as, identify which loops of the code takes
longer execution time, identifies the coverage of
the hotspot loops.
o speedup prediction, if the bottleneck loops are
parallelized

II. BACKGROUND

Statistics say that a program usually spends 90%
of the time in executing less than 10% of the code,
also known as the 90/10 rule [1]. So if we can
optimize the 90% of the code that takes 10% of the
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execution time we will not get better performance.
Rather if we optimize even some small portion of
the 10% of the code that takes 90% of the execution
time we have a high probability of getting better
performance. So, we must find the bottleneck, that
is, the part of the code which takes a long time to
run which is usually called the hot-spot /hot purpose.
We can get this information by profiling code i.e., by
use of profilers. Once we identify the hot-spot we can
try to optimize it and/or parallelize it. And also try
to run the code on parallel architectures to get good
performance. (Minimize the execution time).

Most kernels/hot-spots are located inside loops
and much of the parallelism is found inside the loops.
Hence it is very crucial to identify bottleneck loops.

A. Speedup Estimation

To estimate the speedup that can be achieved after
parallelization there are many models, out of which
the most commonly used is Amdahl’s law [2] as
described in equation 1. Amdahl’s law gives the max-
imum theoretical speedup that could be achieved,
that is, it only gives an upper bound of the speedup
that can be achieved.

B N
14+ (N -1
S = Theoretical Speedup

N = No of processors

« = Percentage of the serial portion of the program
(range: 0 to 1)

S (1)

B. Applications

Source code analysis has become important task
in the compiler community and other software engi-
neering domains [3]. This section lists some of the
applications of source code analysis.

o comprehension [4]

o debugging [5]

« optimization techniques in software engineering

(6]

o performance analysis [7]

« reverse engineering [8]

e program evolution [9]

o testing [10]

« visualization of analysis results [11]

III. METHODOLOGY

The profiler takes as input a configuration file
which contains information about the input program
for which the profiling has to be done. This file
contains the name and location of the input pro-
gram’s source file(s), the compile command and
the execution command for the input program. The
profiler produces as output the profiling information
about the input program. More specifically the profile

contains the timing information of loops, the speedup
that can be achieved if this loop is parallelized. The
loops are ranked based on the time they spend in exe-
cution, with the lowest rank as most time consuming
loop. The input program source file passes through
many stages. These stages are initialization, instru-
mentation, compilation & execution and speedup
prediction & profile generation. These stages are
described in the following sections.

A. Initialization

The profiler first parses the input program into
an Intermediate Representation (IR). A good IR is
one that is independent of the source and target
languages. IR allows to divide the difficult problem
of translation into simpler, more manageable pieces.
In this research, IR is used in order to extract various
details of the code and also to maintain syntactic
correctness of the code at later stages as well. Here
all the functions (sub-routines) used in the input
program are identified, this is done in order to parse
the source code functions (sub-routines) one by one,
iteratively . The other information from the input
configuration file is also stored for later use.

B. Instrumentation

After parsing of the input program the source
code functions are iterated one by one. In each
function the loop blocks are identified. Only the
outer loops are profiled since profiling of inner loops
will give partial information and profile generated
with this information will not be very concise. Af-
ter the loop blocks are identified they are marked.
The instrumentation code is initialized and infused
around the blocks that are marked. This instrumented
source code obtained after instrumentation, is saved
in a separate file so that the source file(s) are not
modified.

C. Compilation & Execution

The instrumented code file is now compiled by
taking the earlier saved compile command. The
compile and execution command is altered by adding
necessary flags and libraries that are required for the
instrumentation code. The instrumented code is then
compiled and executed. If any errors in compilation
or execution, it is reported in the error log.

D. Speedup prediction & profile generation

To predict the speedup Amdahl’s law mentioned
above, is used. To calculate the speedup the number
of processor cores (/) is required. This is taken
as input parameter in the configuration file. To use
Amdahl’s law the value of « is also required. It
is calculated by using the timing information and
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Figure 1. Overview of Profiler System Architecture

applying it in equation 2. Now « and n are used in
Amdahl’s law for speedup prediction for each loop
block.

exectime of theloop
a=1- - 2)
total exectime of the prog

The output generated while execution of the in-
strumented code is captured as JavaScript Object
Notation (JSON) format [12]. The JSON is then
parsed to extract data such as, function name in
which the loop is present, block number, execution
time of the loop, coverage percentage (ratio of ex-
ecution time of the loop block and total execution
time of the program) and speedup if the loop block
is parallelized. All this is combined and saved into
.csv file for future reference.

IV. EXPERIMENTAL TESTBED

The experiments were carried out on a High
performance computing (heterogeneous) server with
configurations as shown in table 1.

A. Server

INTEL XEON E5-2620: This processor is built on
the Ivy Bridge Micro-architecture. It is a two socket
hexa core processor. Each core has 2 threads which
runs at 2 GHz and contains 32KB L1 instruction and
data cache and has L2 cache of the size 256 KB. The
total size of the L3 cache is 15 MB (shared). The size
and type of the ram is 32GB and DDR3 respectively.

Instrumented Code

________________________ ~
|

. . 1
Libraries .

|

1

1

|

Instrumented Proﬁlg 1
Binary Execute Extraction 1

1

|

1

1

|

J

Loop Level
Profile

Table T
CONFIGURATION OF THE SYSTEMS
Server_1
System Intel(R) NVIDIA
Xeon(R) Tesla K40c
CPU
E5-2620
Micro Ivy Bridge Kepler
architecture Micro Micro
architecture architecture
Sockets 2 1
Cores per socket 6 2880
Threads per 12 -
socket
Core speed 2.00 GHz 745 MHz
Core size 32 nm 28 nm
Ram type DDR3 GDDRS5
Ram size 32 GB 12 GB
Memory 42.6 GB/s 288 GB/s
bandwidth
L1 Data Cache 6 x 32K -
L1 instruction 6 x 32K -
Cache
L2 Cache 6 x 256K -
L3 Cache 15360K -
oS OpenSUSE -
Compiler GCC 485/ -
nvee

NVIDIA Tesla K40c: This graphics card has 2880
cores, which has a frequency of 745 MHz. It’s
memory size is 12 GB and is of type GDDRS. It
has a memory bandwidth of 288 GBps. The PCI
Express 3.0 x 16 interface is used to connect this
graphics card with rest of the system.
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V. RESULTS AND ANALYSIS

The Loop Block Profiler was evaluated with 14
programs from the Polybench Benchmark suite [13]
and Rodinia Benchmark suite [14]. For parsing the
input program source code Pycparser [15] was used.
The Profiler was run on the unmodified serial ver-
sions of the benchmarks to generate a Loop level
profile for each program. The profiles generated
were combined and a concise profile of few bench-
mark programs is shown in table II. As noticed,
the profile consists of various fields - In_Function:
shows to which function the Loop Block belongs to,
Block_No: is the block number of the loop in the
function, Speedup (if parallelized): is the predicted
maximum speedup that could be achieved if the Loop
Block is parallelized, Coverage %: is the portion of
total time that the loop takes for execution, Time: Ex-
ecution time of the loop or function, Function_Name:
is the name of the profiled function.

It is observed that some benchmark programs
have fine grained parallelism and some have coarse
grained parallelism. This is indicated by the pro-
filer. Benchmarks- atax, bicg, gesummv, lu have
fine grained parallelism. To achieve high perfor-
mance, loop blocks that have coverages greater than
20% must all be parallelized. Benchmarks programs-
gemm, syr2k, cholesky are coarse grained parallelism
programs where huge parallelism exists in only some
portion of the program. To achieve better perfor-
mance only loops with coverage of 75% or higher
are needed to be parallelized.

The last column of table II shows the speedup
that is obtained on parallelization of the profiled
Loop Blocks. Each Benchmark’s kernel was man-
ually parallelized to increase the performance of
the Benchmark. The speedup obtained by manual
parallelization is within the limit that was estimated
by the profiler (refer column 4 of table II). Hence
the profiler accurately gives the upper bound (max)
speedup that can be achieved after parallelization.

It was observed that the Loop Block profiler
only added a small overhead. On evaluation of 10
Benchmarks for overhead, it was observed that the
overhead incurred was less than 1%, on an average,
of the execution time, with the lowest overhead of
0.1% and highest overhead of 2.1%. This overhead
is very much negligible. The table III shows this
overhead for Polybench Benchmark Suite.

It was seen that the Loop Block profiler was able
to profile all the loop blocks that were executed
during runtime of the benchmark execution. Table
IV portrays this. It can be observed that the total
number of for Loop Blocks in the source code are
different (more in number) than the Loop Blocks
Profiled. This is due to the fact that at runtime not
all the functions (sub-routines) were called, and these
uncalled functions contain some Loop Blocks, that

is, the difference in the Total number and number
of Loop Blocks profiled, is number of the loop
blocks that are not executed at runtime. Suppose if
these uncalled functions would have also been called
(executed during runtime) then the Total number
of Profiled Loop Blocks will be the same as total
number of For Loop Blocks in the Benchmark source
code.

VI. RELATED WORK

Profilers play an  important role in
software/hardware  design,  optimization, and
verification. Different approaches have been
proposed to implement profilers. The Kremlin tool
[16] implements a practical oracle that predicts
outcomes for sequential-code parallelization. The
tool takes in an unmodified serial program and a few
representative inputs, and outputs an ordered list of
the regions that are likely to be the most productive
for the user to parallelize. The approach used in [4]
by Dubach et al. is to improve the performance of
compiled code by searching the space of compiler
options that control optimization levels in GCC. The
main objectives considered in this paper are time
taken for compilation and quality of the code. In [17]
the authors describe the sampling approach to profile
sequential programs. this approach counts procedure
executions. In [18] Kim et al. proposed Parallel
Prophet which implements an emulator along with
a memory performance model to estimate speedup
for the annotated regions of code. It assumes that
the DRAM accesses do not vary when going from
serial to parallel. This assumption is not always true.
Parallel Prophet reduces the analysis overheads and
takes into account memory bandwidth saturation,
the approach is applicable to only offline decisions.
Praun et al. [19] proposed dependence density
metric to state the probability that two random tasks
would have a dependency. This work is very closely
related to Thread-level Speculative parallelization
(TLS). In [20] Wu et al. proposed DProf which
identifies may-dependencies and then find out the
probability that these dependencies will occur using
a compiler. Ketterlin and Claus [21] developed a
tool named Parwiz which facilitates the programmer
to find out potential parallelism by profiling the
dependencies of the input program. In [22] Gao et
al. introduce a source code cross profiler TotalProf,
which measures the performance of an application.

All though there are a lot of profilers available,
there is a need for a light-weight profiler that does
not modify the source code much, there by not
increasing the execution time of the program, and
is extremely fast. The profiler we propose here only
performs small modification on the source code and
is very light-weight in use, that is, it does not add
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Table 11
PROFILED OUTPUT OF POLYBENCH BENCHMARK

Estimated Speedup shown is for N=4

Speedup Coverage Speedup
Benchmark In_Function Block_No | (if paral- % Time obtained
lelized) manually
init_array 4 1.71 55.46 0.04614322
atax kernel_atax 4 1.42 39.55 0.03290431 1.02
init_array 0 1.00 0.03 0.00002288
kernel_atax 0 1.00 0.01 0.00001125
init_array 4 1.74 56.67 0.05361487
bicg kernel_bicg 4 1.44 40.56 0.03837169 1.05
init_array 0 1.00 0.05 0.00004953
kernel_bicg2 0 1.00 0.01 0.00001178
kernel_gemm 0 3.92 99.31 7.20921818 1.63
init_array 0 1.00 0.26 0.01852181
gemm init_array 7 1.00 0.20 0.01446096
init_array 8 1.00 0.19 0.01410919
kernel_syr2k 0 3.97 99.75 17.81511442 3.94
syr2k init_array 0 1.00 0.16 0.02857401
init_array 4 1.00 0.08 0.01392111
init_array 8 3.30 92.98 78.02921866
kernel_cholesky 0 1.05 6.94 5.82375567 1.05
cholesky init_array 0 1.00 0.04 0.03000305
init_array 4 1.00 0.02 0.01794518
init_array 12 1.00 0.01 0.01249174
init_array 0 2.31 75.70 0.03906825
gesummy kernel_gesummy 0 .18 2122 0.01095341 .15
init_array 8 2.24 74.03 78.13759824
kernel_lu 0 1.24 25.90 27.33702285 1.23
Iu init_array 0 1.00 0.03 0.03656997
init_array 4 1.00 0.01 0.01741910
init_array 12 1.00 0.01 0.01191741
Table III Table IV
PROFILER OVERHEAD PROFILER OVERHEAD
Benchmark Execution Execution Overhead Benchmark Total For Total no. of | Total no. of
Time Time with % Loop Loop Loop
Profiling Blocks Blocks Blocks
gemm 7249 7269 028 (Outer) execpted Profiled
gesummy 0.058 0.057 172 during
bicg 0.091 0.093 220 Runtime
mvt 0.053 0.054 1.89 gemm 5 4 4
syr2k 17.749 17.825 0.43 gesummy 3 2 2
atax 0.080 0.082 1.62 bicg 6 4 4
cholesky 82.902 83.398 0.60 mvt S 3 3
gramschmidt | 31.836 31.884 0.15 syr2k 4 3 3
lu 105.950 106.078 0.12 atax 5 4 4
gemver 0.132 0.133 0.76 cholesky 5 4 4
Average 0.98 % gramschmidt 5 3 3
lu 5 4 4
gemver 6 5 5

huge overhead on the execution time of the input
program. It was measured that the proposed profiler
only added a small overhead that was less than 1%
of the execution time, which is very negligible.

VII. CONCLUSION AND FUTURE WORK

We have developed a light-weight profiler that
helps in capturing the profile of Loop Blocks of serial
programs. The profile helps in identifying the hotspot
loops and suggests loops that should be the focused
upon to exploit parallelism. This profile helps the
user to avoid parallelization of other loops that do not
have much significance and parallelization of these
of loops will not increase the performance of the
program. The profile also gives a brief idea to the

user about the speedup that can be achieved after
parallelizing the loops. This allows the programmer
to decide whether he should proceed further in trying
to optimize the program and/or running the program
on a HPC system, in case the HPC system is not
present. The profiler can be used with ease without
any prior planning by the user. The profiler adds
very less execution overhead to the program that is
profiled.

In future work, we will focus on adding data
dependence analysis to the profiler. We intend to add
a new and accurate mathematical model for speedup
prediction. We also intend to add identification of
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energy consumption of Loop blocks in our next
work.
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