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Abstract—Improving interactivity and user 

experience has always been a challenging task. 

One aspect of this could be to improve process 

scheduling. This paper is a detailed survey about 

the attempts that have been made to incorporate 

machine learning techniques to improve process 

scheduling. Various approaches to find the 

appropriate attributes of a process for predicting 

resource utilization have been discussed here. 
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I. INTRODUCTION 

The domain of Computer Science which deals with 

the capability of computers to learn without 

specifying direct instructions is termed as Machine 

Learning. The applications of Machine Learning 

are generally classified as either supervised or 

unsupervised learning. In supervised learning, the 

computer is given a data set with corresponding 

outputs, so that it may learn to predict the output 

for new instances after training. Unsupervised 

learning tries to find structure in the data set based 

on correlation among variables in the data. 

Process Scheduling or job scheduling is the activity 

by which the Operating System (OS) selects an 

available process from the job queue for execution. 

This selection is performed by the scheduler. An 

important element of process scheduling is context-

switching, which takes place when the current 

process is pre-empted. This involves saving of the 

state of the current process before switching the 

CPU to another process. For each context switch, 

there is an associated overhead which results in 

loss of valuable processor time slices. 

One way of improving a user’s experience is to 

ensure that the processes they use are given a larger 

share of the resources i.e. more priority. These 

processes need to be identified and their 

performance can then be improved using data from 

previous executions. 

II. LITERATURE SURVEY 

Before diving into machine learning techniques, 

characteristics of a process, which contribute 

significantly to the prediction of the amount of 

required resources, need to be determined. This has 

been attempted by analysing data regarding 

previous executions [1]. The processes were 

classified into “interactive” and “no interactive” 

programs. Benchmarked Linux programs were 

chosen for experimentation. A total of 24 attributes 

were selected to be used to predict the total 

execution time of the programs. Required system 

calls were made to ascertain the values for the 

various chosen attributes of a particular process. 

The first part of this work was the data collection 

phase where the programs were run for varying 

input sizes. The collected data was then put into 20 

classes to be used for machine learning in WEKA 

using the “Trees, Lazy, Rules” classifier types 

supplied. Decision Trees, K-NN and Decision 

Tables were used for finding robust and accurate 

predictions. The authors did not limit themselves to 

just labels but went a step further by analysing real-

time characteristics of a process. Various subsets of 

the attributes were tested in order to determine 

which subset produced the best predictions for 

“total execution time”. An “attribute evaluator”, 

which assigned a weight to each subset, and a 

“search method”, which determined the kind of 

search to be performed, were used in the process. 

Search methods used were: Genetic Search, Best 

First Search and Rank Search. Evaluation methods 

employed were: CfsSubsetEval and Consistency 

SubsetEval. 

The best attribute they found was “input size” and 

“page reclaims” turned out to be the next best. 

Other attributes that came close were .text 

(executable instructions), .data (initialized data), 

.rel.plt, .dynamic (dynamic linking information), 

page faults and .plt (procedure linkage table). A 

good prediction rate of (91.4%-99.7%) was 

achieved using the aforementioned techniques. 

These results were used to improve PBS scheduling 

where the resource requirements were estimated 

based on knowledge base developed by keeping 

track of previous executions of the program. Thus 

the authors concluded that using suitable attributes, 

a good estimation about the process execution 

behaviour of known programs can be achieved. 

In [2], a similar attempt was made by applying data 

mining techniques to the data present in the kernel 

about each process, to automatically detect and 
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group the processes which have similar behaviour 

and to classify a new process accordingly. They 

analysed the data to find patterns (with or without 

intervention) using classification rules, regression, 

clustering, sequence modelling and association 

rules. 
 
The three major groups into which the processes 

are usually divided are batch, daemon and 

interactive. The attributes of the processes present 

in the Linux context were extracted and used to 

generate a training base. The attributes were 

grouped using an unsupervised learning algorithm. 

The groups formed were manually analysed. Each 

process was identified by the group and a base was 

generated with the labelled data. The 

dimensionality of the attribute vector was reduced 

through algorithms to generate new training bases. 

The classification algorithms were then used to 

perform training samples on the reduced bases. The 

performance of each of the classification algorithm 

was evaluated in relation to the hit rate and the 

processing time to achieve the proposed objective. 

No prior knowledge about the processes was 

present. The data was provided in two phases - 

learning and testing. The source of data was a 

remote terminal server used by undergraduate 

students at PUCPR for academic purposes. The 

attributes were extracted from /proc directory in the 

server as server/proc using PERL. The data was 

later fed into WEKA for processing. This data was 

collected twice a day for 185 days to form a 

database of 97,391 distinct samples each having 

108 attributes. 
 
The grouping analysis used unsupervised learning 

algorithms to group the data based on various 

parameters. The results of the analysis classified 

processes into 6 different groups: 
● A (Interactive applications): all types of 

interactive processes (editors of text, Web 

browsers, email clients, etc.). 
● D (Daemons): processes that run in the 

background and are ready to instructions. 
● F (Desktop Features): processes that 

perform tasks to support the graphical 

desktop environment (configuration, 

component framework, etc.). 
● N (Network): processes involved with 

network communication. 
● C (Text Commands): simple text-mode 

terminal commands. 
● K (Kernel threads): inner threads of the 

core of the operating system. 
● O (others): processes that do not fit into 

the other groups. 

 
The next step was aimed at finding the most 

important attributes which could fully describe all 

the important features with minimal redundancies. 

The algorithms used to find the best subsets were 

Genetic Search, InfoGain: Ranker, CFS: Rank 

Search and CFS: Best-First Search. The evaluation 

procedures were chosen as Information Gain and 

CFS methods. Through the classification 

algorithms, they were able to obtain four databases 

and then a database was generated with the 

common attributes. 
 
The complete database consisted of 108 attributes. 

The database formed by Genetic Search, CFS: 

Rank Search, InfoGain: Ranker and CFS: Best-

First Search returned 40, 19, 10 and 9 attributes 

respectively. Only 4 common attributes could be 

found - stat: vsize (virtual memory in use by the 

process), statm: text (size of memory used by 

process code), stat: endcode (address below which 

the process code can execute), status: VmLib 

(space used by process shared libraries). 
 
To categorize the new processes into the predefined 

classes based on common characteristics, four 

methods were chosen, namely C4.5, OneR, Naïve 

Bayes, MLP (Multi-Layer neural networks). The 

best results were obtained from C4.5 and OneR. 

With just 4 attributes, the results obtained had a hit 

rate greater than 95%. 
 
In [3] the authors proposed a new scheduling 

methodology called “semantical cognitive 

scheduling”. The proposed scheduler aimed at 

providing a “cognitive” approach to scheduling. 

The usefulness of a process in a system was 

estimated with the help of a “utility value”. The 

approach was based on the fact that even though 

there are a diverse range of processes in the system, 

the types of applications, if grouped appropriately, 

are relatively small. The author used several 

approaches to determine the utility value such as: 

“White box” (software vendor specified), “Black 

box” (utilization of AI methods to classify 

applications), “Offline Learning” (classify 

applications separately and use results during 

execution) and “Online Learning” (learning from 

user feedback). 

Based on the lemmas proved by the authors, they 

presented two algorithms for determining the utility 

value. The Optimal Algorithm used Dynamic 

Programming Approach to reduce computation 

complexity when the number of possible states of 

the system was reasonable. The second algorithm 

used Greedy Technique to optimise performance if 

the number of possible states was small. These 

results were applied to improve the management of 

services and daemons which tend to increase in 

number over time affecting boot time and 

performance. 

An approach which utilises dependencies among 

services and user applications was proposed along 
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with the possibility of loading services in such a 

manner that the highest utility of the system was 

achieved. Statistical analysis of previous 

executions of services can be used to estimate best 

combination of services. These steps can improve 

the interactive experience of the user. 
 
In [4], the authors attempted to utilize machine 

learning techniques to predict the CPU burst-time 

for different processes. Scheduling algorithms, 

such as Shortest Job First (SJF) and Shortest Time 

Remaining First (SRTF), rely on predictions of the 

CPU burst lengths of processes in the ready queue. 

Methods such as Exponential averaging have been 

employed previously in the prediction of CPU burst 

times, but their results have not always been 

reliable or accurate. 
 
The proposed approach was to identify attributes of 

processes that could help determine their CPU 

burst lengths. These were then used by machine 

learning techniques for prediction. This was done 

in the following manner: 
 
● Data sets of real workloads containing process 

attributes were utilized.  These were divided 

into training and testing sets. 
● Relevant attributes were selected and divided 

into two categories based on whether historical 

data was available or not. 
● Different ML algorithms, namely SMOreg, 

MLP, Decision tree and K-NN, were trained 

on both the categories of training data sets and 

models were generated and evaluated using the 

testing datasets. 
● Two criteria for evaluation were used, namely 

correlation coefficient (CC) and relative 

absolute error (RAR). These were used to 

determine how close the predicted values of 

CPU bursts were to the actual values. For a 

good result, a high value of CC accompanied 

by a low RAR percentage was required. 
● Relief selection technique, implemented on the 

WEKA tool, was then used to rank the 

attributes according to their significance in 

determining the CPU burst lengths. 
● From all of the above, tables were constructed 

for both variations (with and without history) 

of the datasets and analysed to determine the 

best set of attributes as well as the best ML 

technique. 

 
It has been found that using ML techniques in 

tandem with attributes of processes with historical 

information gave tremendous results in accurately 

predicting the CPU bursts of different processes, as 

compared to using attributes without historical 

data. All of the aforementioned ML techniques 

gave a high CC value accompanied by a low RAR. 

Out of these, k-NN was found to be the most 

efficient algorithm, giving a CC value of 0.9933 

along with the RAR being as low as 3.46%. Thus, 

employing machine learning techniques in the 

prediction of CPU burst lengths is highly beneficial 

and much more accurate than current techniques. 

Also, the attribute selection techniques improve the 

performance in terms of space complexity. 
 
In [5] the authors presented a feasible approach to 

incorporate current machine learning techniques to 

improve process scheduling by allocating variable 

time slices for different processes to reduce the 

overhead of context-switching. Processes were 

associated with a single integer field referred to as 

special_time_slice (STS), which helped in 

indicating the best estimate ofCPU cycles to be 

allocated, so as to minimize their turnaround time. 

The processes were categorised into different STS 

classes, each having an interval of 50 ticks. 

Determining the STS class of a program 

necessitated prior mapping. However, since an 

infinite number of process instances exist in the 

real world, keeping track of each and every 

instance is a daunting task. To reduce this 

complexity, machine learning tools were employed 

as follows: 
● A set of 5 standard programs were chosen. 

Different instances of these were run with 

different values of STS to determine the shortest 

turnaround time for each. The data of each 

instance, including process attributes, was 

aggregated into one data set. 
● The best STS for a program instance determined 

its STS class. 
● Different machine learning techniques such as 

C.45, k-NN etc. were trained with this data set 

(learning). They were then tested to determine 

the accuracy with which they could predict the 

best STS for each process. 
● Operating on as many as 18 attributes is an 

uphill task for the ML techniques. Hence, 

Exhaustive and Genetic search methods were 

used to determine the minimum set of attributes 

that could accurately determine the STS class of 

any process. 
● When a new process arrived, the above 

mentioned process was used to classify and 

obtain its STS value. This was then fed to the 

Kernel. 

 
Hence, a mapping was established between process 

attributes and STS classes. C.45 was found to be 

the best classifier and 6 characteristics were 

identified to help in prediction. It has been shown 

that with the usage of special_time_sllices, there 

was a noticeable drop in the turnaround time of 

various processes. Initial experiments showed a 

drop of around 1.4% - 5.8%, and with bigger data 

sets over time, the numbers were predicted to be 

even higher. 
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However, a major drawback of this method is that 

whenever a new program arrives, there is an 

overhead of classifying it separately and feeding 

that data to the Kernel, deteriorating user 

experience. Also, having to maintain the entire 

dataset on the system would lead to space 

constraints, as the amount of data was bound to 

increase over time. The authors have mentioned 

security flaws in the system where a user can 

modify data sets, leading to haphazard results. 

However, the work is still a major stepping stone in 

the field of modern age Operating Systems. 
 
In [6], the history of a Linux scheduler was used to 

predict parameters of current processes, namely 

turnaround time (TaT) and number of context 

switches. This information was then used to 

determine an improved time quantum value, 

consequently reducing the number of pre-emptions 

performed by the scheduler. By lowering this 

number, the CPU overhead owing to pre-emption 

and context-switching was considerably 

minimized. The adaptive time quantum value was 

estimated based on a refined set of attributes that 

were found to be pivotal in building the classifier, 

including but not restricted to the size of 

uninitialized memory, size of hash table, size of 

dynamic linking table and size of string table. 

These attributes were used to create a Decision 

Tree that classified instances into 20 categories of 

ranges of time slices. The classifier was modelled 

using WEKA. A self-learning module was 

implemented based on Reinforcement Learning 

(RL). The decision obtained from the classifier was 

given as input to this module. While the Decision 

Tree classified a new process, this module ran in 

the background to examine new classes. The 

decision of the scheduler to allocate time quanta 

was modelled as a Markov Chain Process. Hence, 

previous classifications were not taken into 

consideration. The effectiveness of the model was 

analysed by executing a set of programs multiple 

times with different priorities. This could be 

evaluated by calculating the number of CPU cycles 

that were saved as the time quantum varied. To 

understand how the TaT is affected by the time 

slice class assigned, multiple graphs were plotted 

for common programs such as matrix 

multiplication, merge sort and heapsort.  The 

correlation was found to be nonlinear; this 

emphasized the need to design a suitable classifier 

that can predict the time quantum optimally. 
This work supports the proposition that minimizing 

the number of context switches can significantly 

reduce the TaT by assigning relevant time slice 

classes to each process. The self-learning module 

provided the system with the ability to constantly 

improve the classification process. 

 

III.  CONCLUSION 

In conclusion, it is seen that machine learning 

techniques can be efficiently integrated into 

existing operating systems to deliver a seamless 

user experience. Initial experiments have been 

fairly successful in pinpointing specific attributes 

of processes that are better suited than others in 

predicting CPU burst cycles and resource 

utilisation. Classification of processes has been 

extensively employed in previous works to 

simplify decision making. Granting extra time 

slices based on analysis of previous executions of a 

process was an innovative approach to improve 

performance. However, the scheduler did not vary 

the time slice of a process based on the frequency 

of usage of the application. Future work in this 

domain can entail prioritising programs that are 

used routinely. There is scope for improving 

scheduling to cater better to the needs of the user. 
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