
International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 1 – January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1

A Machine Learning Approach for Improving

Process Scheduling: A Survey
Siddharth Dias

1
, Sidharth Naik

2
, Sreepraneeth K

3
, Sumedha Raman

4
, Namratha M

5

1,2,3,4 (IV year B.E., Department of CSE, BMS College of Engineering, Bangalore.)
5(Assistant Professor, Department of CSE, BMS College of Engineering, Bangalore.)

Abstract—Improving interactivity and user

experience has always been a challenging task.

One aspect of this could be to improve process

scheduling. This paper is a detailed survey about

the attempts that have been made to incorporate

machine learning techniques to improve process

scheduling. Various approaches to find the

appropriate attributes of a process for predicting

resource utilization have been discussed here.

Keywords—Machine learning, Process

Scheduling.

I. INTRODUCTION

The domain of Computer Science which deals with

the capability of computers to learn without

specifying direct instructions is termed as Machine

Learning. The applications of Machine Learning

are generally classified as either supervised or

unsupervised learning. In supervised learning, the

computer is given a data set with corresponding

outputs, so that it may learn to predict the output

for new instances after training. Unsupervised

learning tries to find structure in the data set based

on correlation among variables in the data.

Process Scheduling or job scheduling is the activity

by which the Operating System (OS) selects an

available process from the job queue for execution.

This selection is performed by the scheduler. An

important element of process scheduling is context-

switching, which takes place when the current

process is pre-empted. This involves saving of the

state of the current process before switching the

CPU to another process. For each context switch,

there is an associated overhead which results in

loss of valuable processor time slices.

One way of improving a user’s experience is to

ensure that the processes they use are given a larger

share of the resources i.e. more priority. These

processes need to be identified and their

performance can then be improved using data from

previous executions.

II. LITERATURE SURVEY

Before diving into machine learning techniques,

characteristics of a process, which contribute

significantly to the prediction of the amount of

required resources, need to be determined. This has

been attempted by analysing data regarding

previous executions [1]. The processes were

classified into “interactive” and “no interactive”

programs. Benchmarked Linux programs were

chosen for experimentation. A total of 24 attributes

were selected to be used to predict the total

execution time of the programs. Required system

calls were made to ascertain the values for the

various chosen attributes of a particular process.

The first part of this work was the data collection

phase where the programs were run for varying

input sizes. The collected data was then put into 20

classes to be used for machine learning in WEKA

using the “Trees, Lazy, Rules” classifier types

supplied. Decision Trees, K-NN and Decision

Tables were used for finding robust and accurate

predictions. The authors did not limit themselves to

just labels but went a step further by analysing real-

time characteristics of a process. Various subsets of

the attributes were tested in order to determine

which subset produced the best predictions for

“total execution time”. An “attribute evaluator”,

which assigned a weight to each subset, and a

“search method”, which determined the kind of

search to be performed, were used in the process.

Search methods used were: Genetic Search, Best

First Search and Rank Search. Evaluation methods

employed were: CfsSubsetEval and Consistency

SubsetEval.

The best attribute they found was “input size” and

“page reclaims” turned out to be the next best.

Other attributes that came close were .text

(executable instructions), .data (initialized data),

.rel.plt, .dynamic (dynamic linking information),

page faults and .plt (procedure linkage table). A

good prediction rate of (91.4%-99.7%) was

achieved using the aforementioned techniques.

These results were used to improve PBS scheduling

where the resource requirements were estimated

based on knowledge base developed by keeping

track of previous executions of the program. Thus

the authors concluded that using suitable attributes,

a good estimation about the process execution

behaviour of known programs can be achieved.

In [2], a similar attempt was made by applying data

mining techniques to the data present in the kernel

about each process, to automatically detect and

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 1 – January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2

group the processes which have similar behaviour

and to classify a new process accordingly. They

analysed the data to find patterns (with or without

intervention) using classification rules, regression,

clustering, sequence modelling and association

rules.

The three major groups into which the processes

are usually divided are batch, daemon and

interactive. The attributes of the processes present

in the Linux context were extracted and used to

generate a training base. The attributes were

grouped using an unsupervised learning algorithm.

The groups formed were manually analysed. Each

process was identified by the group and a base was

generated with the labelled data. The

dimensionality of the attribute vector was reduced

through algorithms to generate new training bases.

The classification algorithms were then used to

perform training samples on the reduced bases. The

performance of each of the classification algorithm

was evaluated in relation to the hit rate and the

processing time to achieve the proposed objective.

No prior knowledge about the processes was

present. The data was provided in two phases -

learning and testing. The source of data was a

remote terminal server used by undergraduate

students at PUCPR for academic purposes. The

attributes were extracted from /proc directory in the

server as server/proc using PERL. The data was

later fed into WEKA for processing. This data was

collected twice a day for 185 days to form a

database of 97,391 distinct samples each having

108 attributes.

The grouping analysis used unsupervised learning

algorithms to group the data based on various

parameters. The results of the analysis classified

processes into 6 different groups:
● A (Interactive applications): all types of

interactive processes (editors of text, Web

browsers, email clients, etc.).
● D (Daemons): processes that run in the

background and are ready to instructions.
● F (Desktop Features): processes that

perform tasks to support the graphical

desktop environment (configuration,

component framework, etc.).
● N (Network): processes involved with

network communication.
● C (Text Commands): simple text-mode

terminal commands.
● K (Kernel threads): inner threads of the

core of the operating system.
● O (others): processes that do not fit into

the other groups.

The next step was aimed at finding the most

important attributes which could fully describe all

the important features with minimal redundancies.

The algorithms used to find the best subsets were

Genetic Search, InfoGain: Ranker, CFS: Rank

Search and CFS: Best-First Search. The evaluation

procedures were chosen as Information Gain and

CFS methods. Through the classification

algorithms, they were able to obtain four databases

and then a database was generated with the

common attributes.

The complete database consisted of 108 attributes.

The database formed by Genetic Search, CFS:

Rank Search, InfoGain: Ranker and CFS: Best-

First Search returned 40, 19, 10 and 9 attributes

respectively. Only 4 common attributes could be

found - stat: vsize (virtual memory in use by the

process), statm: text (size of memory used by

process code), stat: endcode (address below which

the process code can execute), status: VmLib

(space used by process shared libraries).

To categorize the new processes into the predefined

classes based on common characteristics, four

methods were chosen, namely C4.5, OneR, Naïve

Bayes, MLP (Multi-Layer neural networks). The

best results were obtained from C4.5 and OneR.

With just 4 attributes, the results obtained had a hit

rate greater than 95%.

In [3] the authors proposed a new scheduling

methodology called “semantical cognitive

scheduling”. The proposed scheduler aimed at

providing a “cognitive” approach to scheduling.

The usefulness of a process in a system was

estimated with the help of a “utility value”. The

approach was based on the fact that even though

there are a diverse range of processes in the system,

the types of applications, if grouped appropriately,

are relatively small. The author used several

approaches to determine the utility value such as:

“White box” (software vendor specified), “Black

box” (utilization of AI methods to classify

applications), “Offline Learning” (classify

applications separately and use results during

execution) and “Online Learning” (learning from

user feedback).

Based on the lemmas proved by the authors, they

presented two algorithms for determining the utility

value. The Optimal Algorithm used Dynamic

Programming Approach to reduce computation

complexity when the number of possible states of

the system was reasonable. The second algorithm

used Greedy Technique to optimise performance if

the number of possible states was small. These

results were applied to improve the management of

services and daemons which tend to increase in

number over time affecting boot time and

performance.

An approach which utilises dependencies among

services and user applications was proposed along

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 1 – January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3

with the possibility of loading services in such a

manner that the highest utility of the system was

achieved. Statistical analysis of previous

executions of services can be used to estimate best

combination of services. These steps can improve

the interactive experience of the user.

In [4], the authors attempted to utilize machine

learning techniques to predict the CPU burst-time

for different processes. Scheduling algorithms,

such as Shortest Job First (SJF) and Shortest Time

Remaining First (SRTF), rely on predictions of the

CPU burst lengths of processes in the ready queue.

Methods such as Exponential averaging have been

employed previously in the prediction of CPU burst

times, but their results have not always been

reliable or accurate.

The proposed approach was to identify attributes of

processes that could help determine their CPU

burst lengths. These were then used by machine

learning techniques for prediction. This was done

in the following manner:

● Data sets of real workloads containing process

attributes were utilized. These were divided

into training and testing sets.
● Relevant attributes were selected and divided

into two categories based on whether historical

data was available or not.
● Different ML algorithms, namely SMOreg,

MLP, Decision tree and K-NN, were trained

on both the categories of training data sets and

models were generated and evaluated using the

testing datasets.
● Two criteria for evaluation were used, namely

correlation coefficient (CC) and relative

absolute error (RAR). These were used to

determine how close the predicted values of

CPU bursts were to the actual values. For a

good result, a high value of CC accompanied

by a low RAR percentage was required.
● Relief selection technique, implemented on the

WEKA tool, was then used to rank the

attributes according to their significance in

determining the CPU burst lengths.
● From all of the above, tables were constructed

for both variations (with and without history)

of the datasets and analysed to determine the

best set of attributes as well as the best ML

technique.

It has been found that using ML techniques in

tandem with attributes of processes with historical

information gave tremendous results in accurately

predicting the CPU bursts of different processes, as

compared to using attributes without historical

data. All of the aforementioned ML techniques

gave a high CC value accompanied by a low RAR.

Out of these, k-NN was found to be the most

efficient algorithm, giving a CC value of 0.9933

along with the RAR being as low as 3.46%. Thus,

employing machine learning techniques in the

prediction of CPU burst lengths is highly beneficial

and much more accurate than current techniques.

Also, the attribute selection techniques improve the

performance in terms of space complexity.

In [5] the authors presented a feasible approach to

incorporate current machine learning techniques to

improve process scheduling by allocating variable

time slices for different processes to reduce the

overhead of context-switching. Processes were

associated with a single integer field referred to as

special_time_slice (STS), which helped in

indicating the best estimate ofCPU cycles to be

allocated, so as to minimize their turnaround time.

The processes were categorised into different STS

classes, each having an interval of 50 ticks.

Determining the STS class of a program

necessitated prior mapping. However, since an

infinite number of process instances exist in the

real world, keeping track of each and every

instance is a daunting task. To reduce this

complexity, machine learning tools were employed

as follows:
● A set of 5 standard programs were chosen.

Different instances of these were run with

different values of STS to determine the shortest

turnaround time for each. The data of each

instance, including process attributes, was

aggregated into one data set.
● The best STS for a program instance determined

its STS class.
● Different machine learning techniques such as

C.45, k-NN etc. were trained with this data set

(learning). They were then tested to determine

the accuracy with which they could predict the

best STS for each process.
● Operating on as many as 18 attributes is an

uphill task for the ML techniques. Hence,

Exhaustive and Genetic search methods were

used to determine the minimum set of attributes

that could accurately determine the STS class of

any process.
● When a new process arrived, the above

mentioned process was used to classify and

obtain its STS value. This was then fed to the

Kernel.

Hence, a mapping was established between process

attributes and STS classes. C.45 was found to be

the best classifier and 6 characteristics were

identified to help in prediction. It has been shown

that with the usage of special_time_sllices, there

was a noticeable drop in the turnaround time of

various processes. Initial experiments showed a

drop of around 1.4% - 5.8%, and with bigger data

sets over time, the numbers were predicted to be

even higher.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 1 – January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 4

However, a major drawback of this method is that

whenever a new program arrives, there is an

overhead of classifying it separately and feeding

that data to the Kernel, deteriorating user

experience. Also, having to maintain the entire

dataset on the system would lead to space

constraints, as the amount of data was bound to

increase over time. The authors have mentioned

security flaws in the system where a user can

modify data sets, leading to haphazard results.

However, the work is still a major stepping stone in

the field of modern age Operating Systems.

In [6], the history of a Linux scheduler was used to

predict parameters of current processes, namely

turnaround time (TaT) and number of context

switches. This information was then used to

determine an improved time quantum value,

consequently reducing the number of pre-emptions

performed by the scheduler. By lowering this

number, the CPU overhead owing to pre-emption

and context-switching was considerably

minimized. The adaptive time quantum value was

estimated based on a refined set of attributes that

were found to be pivotal in building the classifier,

including but not restricted to the size of

uninitialized memory, size of hash table, size of

dynamic linking table and size of string table.

These attributes were used to create a Decision

Tree that classified instances into 20 categories of

ranges of time slices. The classifier was modelled

using WEKA. A self-learning module was

implemented based on Reinforcement Learning

(RL). The decision obtained from the classifier was

given as input to this module. While the Decision

Tree classified a new process, this module ran in

the background to examine new classes. The

decision of the scheduler to allocate time quanta

was modelled as a Markov Chain Process. Hence,

previous classifications were not taken into

consideration. The effectiveness of the model was

analysed by executing a set of programs multiple

times with different priorities. This could be

evaluated by calculating the number of CPU cycles

that were saved as the time quantum varied. To

understand how the TaT is affected by the time

slice class assigned, multiple graphs were plotted

for common programs such as matrix

multiplication, merge sort and heapsort. The

correlation was found to be nonlinear; this

emphasized the need to design a suitable classifier

that can predict the time quantum optimally.
This work supports the proposition that minimizing

the number of context switches can significantly

reduce the TaT by assigning relevant time slice

classes to each process. The self-learning module

provided the system with the ability to constantly

improve the classification process.

III. CONCLUSION

In conclusion, it is seen that machine learning

techniques can be efficiently integrated into

existing operating systems to deliver a seamless

user experience. Initial experiments have been

fairly successful in pinpointing specific attributes

of processes that are better suited than others in

predicting CPU burst cycles and resource

utilisation. Classification of processes has been

extensively employed in previous works to

simplify decision making. Granting extra time

slices based on analysis of previous executions of a

process was an innovative approach to improve

performance. However, the scheduler did not vary

the time slice of a process based on the frequency

of usage of the application. Future work in this

domain can entail prioritising programs that are

used routinely. There is scope for improving

scheduling to cater better to the needs of the user.

ACKNOWLEDGMENT

The work reported in this paper is supported by the

college [BMSCE, Bangalore] through the

TECHNICAL EDUCATION QUALITY

IMPROVEMENT PROGRAMME [TEQIP-II] of

the MHRD, Government of India.

REFERENCES

[1] A. Negi and K.P. Kishore. “Characterizing Process

Execution Behaviour Using Machine Learning

Techniques”, In DpROMWorkShop Proceedings, HiPC
2004 International Conference, December, 2004.

[2] Araujo, Priscila Vriesman, Carlos Alberto Maziero, and

Júlio César Nievola. “ClassificaçãoAutomática de

ProcessosemSistemasOperacionais. Diss. Dissertação de
mestrado”, 74 p. Pós-GraduaçãoemInformática,

PontifíciaUniversidadeCatólica do Paraná, Curitiba,

2011.

[3] ShlomiDolev , Avi Mendelson and IgalShilman,”

Semantical cognitive scheduling”, Nov. 2012 Technical

Report # 13-02 Research in part by Microsoft and

(Fronts).

[4] Helmy, Tarek, Sadam Al-Azani, and Omar Bin-

Obaidellah. "A Machine Learning-Based Approach to

Estimate the CPU-Burst Time for Processes in the

Computational Grids”, In 2015 Third International
Conference on Artificial Intelligence, Modelling and

Simulation, 2015.

[5] A. Negi and K.P. Kishore. “Applying machine learning

techniques to improve linux process scheduling”, In
TENCON 2005 IEEE, Region 10, pages 16, Nov. 2005.

[6] Ojha, Prakhar, et al. "Learning Scheduler Parameters for

Adaptive pre-emption”, CS & IT-CSCP 2015.

[7] Silberschatz, Abraham, Peter B. Galvin, and Greg Gagne.

Operating system concepts. Vol. 8. Wiley, 2013.

[8] Tom Mitchell, Machine Learning, 1st edition, The Mc-

Graw Hill Company Inc. International Edition,1997

http://www.ijcttjournal.org/

