
International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 3 – June 2015

ISSN: 2231-2803 http://www.ijettjournal.org Page 102

Operating System Process Modeling: An Implementation of

Association Learning Algorithms using Router Kernel Simulated Data
Adamade Peter Simon

#1
, Sadiq Mobolaji Abubakar

*2
, Anyama Oscar Uzoma

#3

#
Department of Computer Science, University of Port Harcourt, Nigeria

Abstract — Large chunk of dispersed data exists in several

databases and data marts, these amount of data if not properly

gathered and analyzed will lead to total loss of useful knowledge.

With the existence of the problem of an efficient scheduling and

resource management techniques in Operating System, there is a dire

need to provide a rule-based scheme to help optimize and maintain

the operating system process modeling in a very efficient manner. To

help improve on this issue, data mining techniques such as data

extraction, cleaning and association rules have been used, Hence,

this paper aims at investigating two of the most efficient learning

association algorithms, FP-Growth and Apriori algorithms with the

objective of helping understand the process of association learning

in a network environment using router kernel data.. This is

implemented using Rapid Miner tool to model the kernel data and

further comparison of the two methods.

Keywords — FG-Growth, Apriori Algorithm, Machine Learning,

Data mining, Multiprogramming.

I. INTRODUCTION

Operating system software goes through a series of user

and software based procedures, which usually begins with

requirements specification, planning, designing, coding and

testing. With each phase having proper design specifications.

These specification ensure that high end quality control

measures are taken.

With the development of supercomputer computers playing

more significant roles in different parts of our daily life and

with software systems getting more difficult, running several

processes on a has become very necessary.

In single user systems, more than one potentially distinct

program may need to be active at the same time. This gives

the effect of parallel execution or running several processes on

a single core of the programs, or pseudo parallelism.

[15], defined a process as the encapsulation of all

information about a running program, allowing the CPU to be

switched between. It usually has a program, input, output and

a state.

In computing tasks, multi-processing are completed during

the same period of time, this means that they are executed

concurrently (in overlying time periods, new processes

starting before others have ended) instead of sequentially (one

completing before the next starts).

The processes share common processing resources, such as

central processing units, memory and time accessories.

 This provides for a basic form of multiple processing

regarded as in multi programming in which several programs

can run at the same time on a single processor, [18]. Since

there is only one processor, there can be no true concurrent

execution of different programs. The operating system

executes part of one program, then part of another, and so on.

To the user it appears that all programs are executing at the

same time.

A. Components of a Process

 Text/code - executable program instructions

 Data – variables used in the program

 Stack - work area used the program

 Parameter passing to subroutines/system calls

 Process Control Block, PCB entry in Process

1) Statement of the Problems:

Improper management in an operating system can lead to

the total failure of computer systems. Leading to loss of

service, loss of valuable data, loss of equipment, valuable and

lots more.

The summary of the problem are stated as thus:

• Ability to comprehend process pattern in order prevent

failure

• Identifying possible working system multi-processing

failure prone conditions.

1) Process Model

Process model introduces the concept of how processes are

designed. Designs with respect to the following:

• Physical program counter

• The autonomous sequential processes

• Process pseudo parallelism

 Fig 1. Process Model, [17]

 C) Process Performance Optimization

Process performance is the time it takes for certain

processes to be completed and this gives room for quality in

the provision of service. The less time it takes to complete

these processes, the better the performance of the process.

Some of the metrics used in performance include response

time, throughput and scalability.

Response time is the time a user of a computer system

submits a request to the time it takes for a result is produced

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 3 – June 2015

ISSN: 2231-2803 http://www.ijettjournal.org Page 103

e.g. a user clicks a button on a word processor and it carries

out an action such as changing the font of an entire document.

The lower the response time value, the better the performance

is deemed to be. This is particularly important in interactive

systems, [3].

Throughput is the number of processes that complete per

unit time.

Scalability is also important. A system is said to be scalable

if its performance degrades gracefully (i.e. not significantly)

as the load increases, [13].

Some other important metrics, include

i average waiting time

D) Advantages of Multiple Processes

The advantage of multiple processes is that there are more

processes competing for control of the processor(s).

In general, choose multiple processes when a significant

amount of overlap between the processes can be achieved.

The application is too complex to develop as a single

process, or would be too complex and difficult to maintain.

E) Disadvantages of Multiple Processes

 High overhead time and more resource consumption by the

operating system. This does not directly contribute to the

processing needed by the application.

F) Process States

During their lifetime, processes will always exist in one of

three states: running, ready, or blocked.

The state of a process is determined by the operating

system, and is recorded in its process table entry.

Many factors can affect the state of a process and they are -

1) Process States: Running

A process in the running state is presently being executed

by a CPU with all necessary resources required for execution

2) Process States: Ready

A process is in the ready state has all necessary resources

required for execution except the CPU.

3) Process States: Blocked

A process in the blocked state is not capable of being

executed because one or more required resources are

unavailable.

G) Multithreading

In general, a computer program is a series of instructions

that are executed by a CPU. Multithreaded programming takes

this idea and replicates it. A multithreaded program has many

sequences, each sequence within an independent thread, [12].

It is like having different small programs all running

together in parallel. In case of a single processor system e.g.

Intel HT processor, the operating system has a procedure

called scheduler that provides the illusion that multiple threads

are running in parallel, [11].

Hence for an operating system like Windows, a software

application must have a multithreaded architecture in order to

benefit from multiple CPUs. The main task is to divide the

processing load among several threads in order to achieve

maximum performance.

II. RELATED WORK

[4], wrote a report on the state of the art of CPU designs.

Current CPU designs have multicore architectures, also

known as Chip Multi-Processors (CMP). They consist of

several cores which function like individual CPUs. Each core

has a fast Level 1 cache, and can share a larger Level 2 cache

with the other cores, as in the Intel Core 2 Duo CPUs. Some

designs have each core with its own Level 1 and Level 2

cache, and sharing a Level 3 cache with the other cores, as in

the AMD Phenom and Intel Core i7 processors. Also, a Level

2 cache could be shared by a subset of the CPU cores, as in

the Intel Core 2 Quad CPU. The caches store data and

instructions for access faster than fetching them from main

memory, thereby feeding the fast cores quickly. Schedulers

typically implement time sharing, where each thread gets a

small time slice on a processor or core, and space sharing,

where each job is assigned to a subset of the cores available.

[5], described the current challenges facing the parallel job

scheduling community. For commodity parallel computers

such as desktops and servers they identify several scheduling

challenges, including variable loads (interactive applications,

media applications such as video, background programs, and

parallel applications that require synchronization or co-

scheduling). The underlying problem is that co-scheduled

processes suffer degraded performance, while collaborating

processes suffer performance loss if not co-scheduled. For

desktops the scheduler must also respond to changes in user

priorities quickly.

[8], describes the internals of the Linux CFS (Completely Fair

Scheduler). The Linux CFS scheduler keeps track of how

much tasks are being treated unfairly. A task is being treated

unfairly if it is not being executed by the CPU. It maintains a

binary search tree (a red-black tree) that orders tasks

according to how unfairly they are being treated.

A) Process Models for Parallel Programming

Architectures

There are three main models for parallel programming

multi-core architectures, [1]. These models are the

• Message-Passing Paradigm (MPI),

• Shared Memory Programming model and

• Partitioned Global Address Space (PGAS)

programming model

1) Message Passing Interface (MPI)

It is the most frequently used model in representing parallel

programs since it can be employed not only within a single

processing node but can be used via several connected ones.

MPI standard has been designed to project compactness in

parallel applications, as well as to bridge the gap between the

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 3 – June 2015

ISSN: 2231-2803 http://www.ijettjournal.org Page 104

performance offered by a parallel construction and the actual

performance delivered to the submission, [2]. Two critical

areas regulate the overall performance level of an MPI

implementation. The first area is the low level communication

layer that the upper layers of an MPI implementation can use

as foundations. The second area covers the communication

progress and management, [2].

MPI offers several functions such as point-to-point

operations, logical process topology, data exchange, gathering

and reduction operations to combine partial results from

parallel processes, and synchronization capabilities manifested

in barrier and event operations.

The shared memory programming model permits a simpler

programming of parallel applications, as the control of the

data location is not required. OpenMP [6], is the most used

solution for shared memory programming, as it allows an easy

development of parallel applications through compiler

directives. Moreover, it is becoming more important as the

number of cores per system increases. However, as this model

is limited to shared memory architectures, the performance is

bound to the computational power of a single system, [16].

2) Partitioned Global Address Space (PGAS)

programming model

It combines the main features of the message passing and the

shared memory programming models. In PGAS languages,

each thread has its own private memory space, as well as an

associated shared memory region of the global address space

that can be accessed by other threads, although at a higher cost

than a local access. Thus, PGAS languages allow shared

memory-like programming on distributed memory systems.

Fig 2. Multiprogramming System Framework

III. ASSOCIATION LEARNING FRAMEWORK

This will involve the use of large item sets to generate the

desired of rules from processes data pool, [18]. This helps

provide for optimization of the various process modules such

as the context switching, scheduling and memory management.

These rules help in the process management framework and it

further ensures that best possible set of rules, approaches are

designed and defined for the process model optimization

scheme with respect to the existing scheme. In the

experiment, processA, processC, processD and

processAprocessB are large item sets, then we can determine

if rule processAprocessB = processCprocessD holds.

For the purpose of this research work, the two algorithms

will be investigated using the rapid miner modelling tool.

i APRIORI algorithm.

ii FG-Growth

APRIORI algorithm

 Iteratively reduces the minimum support until it finds the

required number of rules with the given minimum confidence.

The algorithm has an option to mine class association rules. It

is simple, fast, and very good at finding interesting rules of a

specific kind in baskets or other transaction data, [14].

The algorithm works by finding frequent item sets using

candidate generation. It uses Apriori property that all

nonempty subsets of a frequent item set must also be frequent.

Algorithms for discovering large item sets make multiple

passes over the data

In the first pass, we count the support of individual items

and determine which of them are large (with minimum

support).

In each subsequent pass, a seed set of item sets found to be

large in the previous pass will then use this seed set for

generating new potentially large item sets, called candidate

item sets, and count the actual support for these candidate

item sets during the pass over the data

At the end of the pass, we determine which of the candidate

item sets are actually large, and they become the seed for the

next pass.

This process continues until no new large item sets are

found

The following steps are taken.

Step 1:

The Prune Step: To find the count of each candidate in Ck

the entire database is scanned. Candidate k-item set is

represented by Ck. To find whether that item set can be placed

in frequent k-item set Lk to count each item set in Ck is

compared with a predefined minimum support count, [7].

Step 2:

The join step: Lk is natural joined with itself to get the next

candidate k+1- item set Ck+1. The major step here is the

prune step which requires scanning the entire database for

MULTI

PROGRAMMING

SOLUTIONS

MULTI-

PROCESSING

CENTRALIZED

SYSTEM

DISTRIBUTED

SYSTEM

SINGLE

PROCESSING

SYMETRIC

SYSTEM

ASYMETRIC

SYSTEM

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 3 – June 2015

ISSN: 2231-2803 http://www.ijettjournal.org Page 105

finding the count of each item set in every candidate k-item

set. If the database size is large, so to find all the frequent item

sets in the database, it requires more time (Han and Micheline,

2006).

Pseudocode

 Find all large 1-itemsets

 For (k = 2 ; while Lk-1 is non-empty; k++)

 {Ck = apriori-gen(Lk-1)

 For each c in Ck, initialise c.count to zero

 For all records r in the DB

 {Cr = subset(Ck, r); For each c in Cr , c.count++ }

 Set Lk := all c in Ck whose count >= minsup

 } /* end -- return all of the Lk sets.

The major step here is the prune step which requires

scanning the entire database for finding the count of each Item

set in every candidate k-item set. If the database size is large,

so to find all the frequent item sets in the database, it requires

more time.

A) Implementation of Apriori using Rapid Miner

Steps – Import datasets

Transform datasets from nominal to binomial

Metrics used – Number of required rules

 Confidence

 Transformations

 Delta

 Upper bound

 Minimum bound

 Significance

 Fig4. The NTCDUMS APRIORI Metric

 Fig5. Apriori Algorithm Model blocks

Features categories used:

• TCP/IP connection

• Traffic features

• Same host

• Protocol behaviour

• Service

• Time-based

• Content features.

Fig6. Results Apriori Algorithm

Fig7. Graph of label against attributes

spread

B) FG-GROWTH

This operator efficiently calculates all frequent item sets

from the given Example Set using the FP-tree data structure. It

is compulsory that all attributes of the input Example Set

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 3 – June 2015

ISSN: 2231-2803 http://www.ijettjournal.org Page 106

should be binominal. In simple words, frequent item sets are

groups of items that often appear together in the data. It is

important to know the basics of market-basket analysis for

understanding frequent item sets.

The market-basket model of data is used to describe a

common form of a many-to-many relationship between two

kinds of objects. On the one hand, we have items, and on the

other we have baskets, also called 'transactions'. The set of

items is usually represented as set of attributes. Mostly these

attributes are binominal. The transactions are usually each

represented as examples of the Example Set. When an

attribute value is 'true' in an example; it implies that the

corresponding item is present in that transaction. Each

transaction consists of a set of items (an itemset).

Usually it is assumed that the number of items in a

transaction is small, much smaller than the total number of

items i.e. most of the examples most of the attribute values are

'false'. The number of transactions is usually assumed to be

very large i.e. the number of examples in the ExampleSet is

assumed to be large. The frequent-itemsets problem is that of

finding sets of items that appear together in at least a threshold

ratio of transactions. This threshold is defined by the

'minimum support' criteria. The support of an itemset is the

number of times that itemset appears in the ExampleSet

divided by the total number of examples. The 'Transactions'

data set at "Samples/data/Transactions" in the repository of

RapidMiner is an example of how transactions data usually

look like.

The discovery of frequent itemsets is often viewed as the

discovery of 'association rules', although the latter is a more

complex characterization of data, whose discovery depends

fundamentally on the discovery of frequent itemsets.

Association rules are derived from the frequent itemsets. The

FP-Growth operator finds the frequent itemsets and operators

like the Create Association Rules operator uses these frequent

itemsets for calculating the association rules.

Pseudo code

Input: D, minsupp, J ⊆ I

Output: F[J]

 F[J]={};

 forall i I ∈ occurring in D {

 F[J]=F[J]∪ {J∪ {i}};

 //Create Di;

 Di={};

 H={};

 forall j I ∈ occurring in D such that j>I

 if (support(J∪ {i,j})≥minsupp)

 H=H ∪ {j};

 forall (tid,X)∈D with i∈X Di = Di ∪

{(tid,X ∩ H)};

 //Depth-first recursion

 Compute F[J ∪ {i}];

 F[J]=F[J]∪ F[J ∪ {i}];

 }

1) Implementation of FP-Growth using

Rapid Miner

 Fig 8. Model blocks FP-Growth

Fig 9. Router Simulated Data Set used

Steps – Import datasets Discretise

Transform datasets from nominal to binomial, using a

minimum support of 0.1 and maximum item of -1

2) Results obtained

Fig 9. Deviation graph showing label against attribute range

IV. RESULT DISCUSSION

Applying both operators on the simulated data set, it was

observed that the Apriori algorithm processes data in a

different manner from the FPGrowth and it creates association

rules by eliminating the sets of articles which are not frequent

(with a minimum support smaller than the minimum support

specified). There is a significant correlation between the

outputs of both approaches. FP-Growth perform data scans

and is therefore often applicable even on large data sets,

which is totally different from the behaviour of the Aproiri

algorithm.

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 24 Number 3 – June 2015

ISSN: 2231-2803 http://www.ijettjournal.org Page 107

Also, from the results, if the optimization value obtained

from the FPGrowth is smaller than 0.1, then the test is 80%

reliable, i.e. the null hypothesis can be rejected at a trust level

of 80%.

If the value is smaller than 0.05, the test is 85% reliable, i.e.

the null hypothesis can be rejected at a trust level of 85%.

Table 1. Comparison of results of both algorithms

APRIORI FPGROWTH

Significant

correlation

yes

Significant

correlation

yes

Generates

Frequency set

yes

Generates

Frequency set

no

Reducing data

by minimum

support

yes

Reducing data by

minimum support

no

Learns from

large dataset

no

Learns from large

dataset

yes

Candidate set

generation

no

Candidate set

generation

yes

Faster Slower

Discards

infrequent

item

no

Discards

infrequent item

yes

Less memory

management

Less memory

management

Varaiable

order is used

during variable

scanning

Fixed order is

used during

variable scanning

Uses recursion Uses

recursion

V. CONCLUSION

The association procedures play a key role in many data

mining tasks, by trying to find interesting patterns in databases.

In order to obtain these association rules the frequent sets of

articles must be previously generated.

The study also shows the usefulness of using both

techniques in association mining. At the end of the experiment,

Apriori yielded to be a better technique using same datasets

and same platform. This has further shown the effectiveness

of the use data mining techniques in association rule.

A) Research Highlights

The research highlights of this paper are:

• This paper investigates the effect of using FP-Growth

and APRIORI Algorithms on Router Simulated Datasets

• The study also projects the better approach by

comparing the results

REFERENCES

[1] I. Alaa. Parallel Performance of MPI Sorting Algorithms on Dual–

Core Processor Windows-Based Systems. International Journal of

Distributed and Parallel Systems. Vol.2, No.3. DOI:

10.5121/ijdps.2011.2301, 2011.
[2] D. Buntinas, G, Mercier. and W.. Gropp. Implementation and

Evaluation of Shared- Memory Communication and Synchronization

Operations in MPICH2 using the Nemesis Communication Subsystem.
Journal of Parallel Computing, vol. 33, no. 9, pp. 634-644., 2011.

[3] D. Dhamdhere. (2007). Operating Systems: A Concept-Based

Approach. McGraw-Hill. Retrieved: 7/05/2015:
http://arxiv.org/ftp/arxiv/papers/1011/1011.1735.pdf, 2007.

[4] K. Fax´en, C. Bengtsson, M. Brorsson, G. H°akan, E. Hagersten,

Jonsson B., Kessler C. Lisper B., Stenstr¨om P. and Svensson, B.
(2008). Multicore computing - the state of the art. Retrieved:

22/05/2015: http://arxiv.org/ftp/arxiv/papers/1011/1011.1735.pdf

[5] E. Frachtenburg and U. Swiegelshohn. Job Scheduling Strategies for
Parallel Processing. Springer. Retrieved: 22/05/2015:

http://arxiv.org/ftp/arxiv/papers/1011/1011.1735.pdf

[6] Gabriel et al. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Iimplementation. Proceedings of 11th European

PVM/MPI Users’ Group Meeting, Budapest, pp. 97–104., 2004.

[7] I. Han and K. Micheline Data Mining concepts and Techniques.
Morgan Kaufmann Publishers, San Francisco. 2nd ed. Retrieved:

22/05/2015: http://dl.acm.org/citation.cfm?id=355013

[8] A. Kumar. Multiprocessing with the completely fair scheduler.
Technical report. IBM Developer Works. Retrieved: 22/05/2015:

http://scholarworks.bgsu.edu/cgi/viewcontent.cgi?article=1000&contex

t=ms_tech_mngmt
[9] B. Lyer and D. Dias, (2003). System Issues in Parallel Sorting for

Database Systems. Proceedings of the International Conference on

Data Engineering, pp. 246-255, 2003.
[10] D. Mallón, G. Taboada, C. Teijeiro, J. Touriño, A. Fraguela. A.

Gómez, R. Doallo and J. Mouriño. Performance Evaluation of MPI,
UPC and OpenMP on Multicore Architectures. EuroPVM/MPI LNCS

5759, pp. 174-184., 2009.

[11] S. Manu, S. Preeti and M. Vijay. Genetic Algorithm Optimal Approach
for Scheduling Processes In Operating System. International Journal of

Engineering Research & Technology (IJERT). Vol. 2 Issue 5, 2013.

[12] T. Martinez and S. Parikh. Understanding dual-processor, Hyper
Threading Technology and Multi-Core Systems, Technical White

Paper, 2005.

[13] D. Menasc´e, V. Almeida and L. Dowdy. (2004). Performance by
Design. Pearson Education, Retrieved: 2/05/2015:

http://arxiv.org/ftp/arxiv/papers/1011/1011.1735.pdf

[14] S. Nilesh, S. Shailendra S. and W. Shende. Implementing Apriori
Algorithm in Parallel. IJCAT International Journal of Computing and

Technology, Volume 1, Issue 3, April 2014. ISSN: 2348 – 6090, 2014.

[15] A. Stanley. Operating Systems lecture note. Retrieved: 2/05/2015:
http://csalpha.unomaha.edu/~stanw/101/csci4500/m03_6.pdf

[16] H. Umar, S. Haroon and I. Muhammad. Parallel Implementation of 1-D

Complex FFT Using Multithreading and Multi-Core Systems.
International Journal of Computer and Communication Engineering,

Vol. 2, No. 2., 2013.

[17 N. Tiina. Operating Systems lecture note. Retrieved: 27/06/2015:
https://www.cs.helsinki.fi/u/niklande/opetus/kj/2008/lectures/os-2008-

l02-handout2.pdf runtime storage management in compiler design

VOL.10 No.8, 2010.
[17] S. Khasim. New Vision of the Computer Operating System.

International Journal of Computer Trends and Technology (IJCTT) -

volume4. Issue4. ISSN: 2231-2803. pp 739-743, 2013.
[18] A. Priyadarshni. Heterogeneous Multi Core Processors for Improving

the Efficiency of Market Basket Analysis Algorithm in Data Mining.

International Journal of Computer Trends and Technology (IJCTT).
Volume 15, ISSN: 2231-2803, pp 16, 2014.

http://www.ijettjournal.org/

